instituto de matemáticas universidad de sevilla
Antonio de Castro Brzezicki
imus-logo
Fernando Fernández Sánchez
Miembro ordinario
fefesan@us.es
http://personal.us.es/fefesan/
Situación profesional: Profesor Titular
Despacho: ETSI, Camino de los Descubrimientos
Departamento: Matemática Aplicada II
Teléfono: 954481182

Proyectos de la JJAA

P12-FQM-1658 Formas Normales, Complejidad y Bifurcaciones de Sistemas Dinámicos Miembro del Proyecto
P08-FQM-03770 Sistemas Dinámicos: Complejidad y Bifurcaciones Miembro del Proyecto
EXC/2005/FQM-872 Complejidad dinámica y bifurcaciones en sistemas de evolución temporal Miembro del Proyecto

Proyectos del Plan Nacional I+D+i

MTM2017-87915-C2-1-P Singularidades en sistemas dinámicos: el papel de la regularidad Responsable
MTM2014-56272-C2-1-P Comportamientos de bifurcación en sistemas dinámicos diferenciables y no diferenciables Responsable
MTM2010-20907-C02-01 Comportamientos Globales en Sistemas Autónomos Tridimensionales Responsable
MTM2007-64193 Formas Normales y Despliegues de Sistemas Dinámicos Autónomos Miembro del Proyecto

Grupo PAIDI - Plan Andaluz de Investigación, Desarrollo e Innovación

TIC130 Investigación en Sistemas Dinámicos en Ingeniería Miembro del Proyecto


Listado de Artículos (34)

  • Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.. Comments on “Shilnikov chaos and Hopf bifurcation in three-dimensional differential system”. Optik (2018)
  • V. Carmona, F. Fernández-Sánchez, E. García-Medina. Including homoclinic connections and T-point heteroclinic cycles in the same global problem for a reversible family of piecewise linear systems. Applied Mathematics and Computation (2017)
  • Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. Comment on “Study on the reliable computation time of the numerical model using the sliding temporal correlation method”. Theorectical and Applied Climatology (2016)
  • Algaba, A.; Fernández-Sánchez, F.; Merino, M.; Rodríguez-Luis, A. J. Analysis of the T-point-Hopf bifurcation in the Lorenz system. Communications in Nonlinear Science and Numerical Simulation (2015)
  • Algaba, A.; FernándezSánchez, F.; Merino, M.; RodríguezLuis, A.J.. Comments on "Invariant algebraic surfaces of the generalized Lorenz system". Zeitschrift fur Angewandte Mathematik und Physik (2015)
  • Carmona, V., Fernández-Sánchez, F., García-Medina, E., Teruel, A.E. Noose Structure and Bifurcations of Periodic Orbits in Reversible Three-Dimensional Piecewise Linear Differential Systems. Journal of Nonlinear Science (2015)
  • Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. Comments on "Dynamics of the general Lorenz family" by Y. Liu and W. Pang. Nonlinear Dynamics (2014)
  • Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. Comments on "Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces". Physica D-nonlinear Phenomena (2014)
  • Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. Centers on center manifolds in the Lorenz, Chen and Lü systems. Communications in Nonlinear Science and Numerical Simulation (2014)
  • Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. Comments on "the Chen system revisited". Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms (2014)
  • Carmona, V.; Fernández-García, S.; Fernández-Sánchez, F.; García-Medina, E.; Teruel, A. E. Noose bifurcation and crossing tangency in reversible piecewise linear systems. Nonlinearity (2014)
  • Algaba Durán, Antonio; Fernández Sánchez, Fernando; Merino Morlesín, Manuel; Rodríguez Luis, Alejandro José. Comment on "A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family". Communications in Nonlinear Science and Numerical Simulation (2014)
  • Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. On Darboux polynomials and rational first integrals of the generalized Lorenz system. Bulletin des Sciences Mathematiques (2014)
  • Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. Comment on "Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems" [Appl. Math. Comput. 218 (2012) 11859–11870]. Applied Mathematics and Computation (2014)
  • Algaba Durán, Antonio; Fernandez Sanchez, Fernando; Merino Morlesín, Manuel; Rodríguez Luis, Alejandro José. On Shil'nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System. ASME Journal of Computational and Nonlinear Dynamics (2013)
  • Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J.. Comment on `Šilnikov-type orbits of Lorenz-family systems' [Physica A 375 (2007) 438–446]. Physica A. Statistical Mechanics and its Applications (2013)
  • Algaba Durán, Antonio; Fernández Sánchez, Fernando; Merino Morlesín, Manuel; Rodríguez Luis, Alejandro José. Comments on "Non-existence of Shilnikov chaos in continuous-time systems".. Applied Mathematics and Mechanics (2013)
  • Algaba Durán, Antonio; Fernández Sánchez, Fernando; Merino Morlesín, Manuel; Rodríguez Luis, Alejandro José. Comments on the paper "Chaotic motions of a two-dimensional airfoil with cubic nonlinearity in supersonic flow". Aerospace Science and Technology (2013)
  • Algaba Durán, Antonio; Fernández Sánchez, Fernando; Merino Morlesín, Manuel; Rodríguez Luis, Alejandro José. Chen's attractor exists if Lorenz repulsor exists: The Chen system is a special case of the Lorenz system.. CHAOS (2013)
  • Algaba Durán, Antonio; Fernández Sánchez, Fernando; Merino Morlesín, Manuel; Rodríguez Luis, Alejandro José. Comment on "Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization". Chaos, Solitons & Fractals (2013)
  • Algaba Durán, Antonio; Fernández Sánchez, Fernando; Merino Morlesín, Manuel; Rodríguez Luis, Alejandro José. The Lü system is a particular case of the Lorenz system.. PHYSICS LETTERS A (2013)
  • Antonio Algaba, Fernando Fernández-Sánchez, Manuel Merino, Alejandro J. Rodríguez-Luis. Rebuttal of "Existence of attractor and control of a 3D differential system'' by Z. Wang. NONLINEAR DYNAMICS (2012)
  • Carmona, V.; Fernández-García, S.; Fernández-Sánchez, F.; García-Medina, E.; Teruel, A.E. Reversible periodic orbits in a class of 3D continuous piecewise linear systems of differential equations. Nonlinear Analysis: Theory, Methods & Applications. An International Multidisciplinary Journal (2012)
  • Algaba Durán, Antonio, Fernandez Sanchez, Fernando, Merino Morlesín, Manuel, Rodríguez Luis, Alejandro José. Comments on "Analysis and application of a novel three-dimensional energy-saving and emission-reduction dynamic evolution system". ENERGY (2012)
  • Antonio Algaba Durán, Fernando Fernández Sánchez, Manuel Merino Morlesín, Alejandro José Rodríguez Luis. Comment on "Stability and chaos of a damped satellite partially filled with liquid". ACTA ASTRONAUTICA (2012)
  • Antonio Algaba, Fernando Fernández-Sánchez, Manuel Merino, Alejandro J. Rodríguez-Luis. Comment on "Existence of heteroclinic orbits of the Shil'nikov type in a 3D quadratic autonomous chaotic system''. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS (2012)
  • Antonio Algaba Durán, Fernando Fernández Sánchez, Manuel Merino Morlesín, Alejandro José Rodríguez Luis. Comment on "Heteroclinic orbits in Chen circuit with time delay''. Communications in Nonlinear Science and Numerical Simulation (2012)
  • Antonio Algaba, Fernando Fernández-Sánchez, Manuel Merino, Alejandro J. Rodríguez-Luis. Comment on "Sil'nikov chaos of the Liu system''. CHAOS (2011)
  • Antonio Algaba Durán, Fernando Fernandez Sanchez, Manuel Merino Morlesín, Alejandro Rodriguez Luis. Structure of Saddle-Node and Cusp Bifurcations of Periodic Orbits Near a Non-Transversal T-Point. Nonlinear Dinamics (2011)
  • Antonio Algaba Durán, Manuel Merino Morlesín, Fernando Fernandez Sanchez, Alejandro Rodriguez Luis. Hopf Bifurcations and Their Degeneracies in Chua's Equation. International Journal of Bifurcation and Chaos (2011)
  • Victoriano Carmona Centeno, Fernando Fernandez Sanchez, Elisabeth García Medina, Antonio Teruel Aguilar. Existence of Homoclinic Connections in Continuous Piecewise Linear Systems. Chaos (2010)
  • Antonio Algaba Durán, Fernando Fernandez Sanchez, Manuel Merino Morlesín, Alejandro Rodriguez Luis. Analysis of the T-Point-Hopf Bifurcation With Z2-Symmetry: Application to Chua's Equation. International Journal of Bifurcation and Chaos (2010)
  • Victoriano Carmona Centeno, Fernando Fernandez Sanchez, Antonio Teruel Aguilar. Existence of a Reversible T-Point Heteroclinic Cycle in a Piecewise Linear Version of the Michelson System. Siam Journal on Applied Dynamical Systems (2008)
  • Fernando Fernandez Sanchez, Emilio Freire Macias, Alejandro Rodriguez Luis. Analysis of the T-Point-Hopf Bifurcation. PHYSICA D-NONLINEAR PHENOMENA (2008)

Libros y capítulos (2)

  • Carmona, V., Cuevas-Maraver, J., Fernández-Sánchez, F., García-Medina, E.. Preface. (2018)
  • Algaba, A., FernándezSánchez, F., Merino, M., RodríguezLuis, A.J.. Cusps of Periodic Orbits in Chua's Equation. (2011)

Aportaciones a congresos (3)

  • FernándezSánchez, Fernando; Carmona, Victoriano; GarcíaMedina, Elisabeth. Poincaré halfmaps for piecewise linear systems via inverse integrating factors. IEEE International Meeting on Analysis and Applications of Nonsmooth Systems, AANS2014 (2014)
  • GarcíaMedina, Elisabeth; Carmona, Victoriano; FernándezSánchez, Fernando. A common analytic proof of the existance of a homoclinic and Tpoint in reversible piecewise linear system. IEEE International Meeting on Analysis and Applications of Nonsmooth Systems, AANS2014 (2014)
  • GarcíaMedina, Elisabeth; Carmona, Victoriano; FernándezSánchez, Fernando; Teruel, Antonio E.. Una prueba de la existencia de conexiones globales en sistemas lineales a trozos.. II Congreso de Jóvenes Investigadores. (2013)

LEYENDA

Arxiv
Doi
MathSciNet
Scopus
Citas
,,, Cuartiles
Listado de Artículos (34)
Comments on “Shilnikov chaos and Hopf bifurcation in three-dimensional differential system” Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J., Optik 2018 - 0
Including homoclinic connections and T-point heteroclinic cycles in the same global problem for a reversible family of piecewise linear systems V. Carmona, F. Fernández-Sánchez, E. García-Medina, Applied Mathematics and Computation 2017 - 0
Comment on “Study on the reliable computation time of the numerical model using the sliding temporal correlation method” Algaba, Antonio, Fernández-Sánchez, Fernando, Merino, Manuel, Rodríguez-Luis, Alejandro J., Theorectical and Applied Climatology 2016 - 0
Analysis of the T-point-Hopf bifurcation in the Lorenz system Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A. J., Communications in Nonlinear Science and Numerical Simulation 2015 - 4
Comments on "Invariant algebraic surfaces of the generalized Lorenz system" Algaba, A., Fernández Sánchez, F, Merino, M, RodríguezLuis, A.J., Zeitschrift fur Angewandte Mathematik und Physik 2015 - 0
Noose Structure and Bifurcations of Periodic Orbits in Reversible Three-Dimensional Piecewise Linear Differential Systems Carmona, V., Fernández-Sánchez, F., García-Medina, E., Teruel, A.E., Journal of Nonlinear Science 2015 - 0
Centers on center manifolds in the Lorenz, Chen and Lü systems Algaba, Antonio, Fernández-Sánchez, Fernando, Merino, Manuel, Rodríguez-Luis, Alejandro J., Communications in Nonlinear Science and Numerical Simulation 2014 - 5
Noose bifurcation and crossing tangency in reversible piecewise linear systems Carmona, V., Fernández-García, S., Fernández-Sánchez, F., García-Medina, E., Teruel, A. E., Nonlinearity 2014 - 1
Comments on "Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces" Algaba, Antonio, Fernández-Sánchez, Fernando, Merino, Manuel, Rodríguez-Luis, Alejandro J., Physica D-nonlinear Phenomena 2014 - 2
Comment on "A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family" Algaba Durán, Antonio, Fernández Sánchez, Fernando, Merino Morlesín, Manuel, Rodríguez Luis, Alejandro José, Communications in Nonlinear Science and Numerical Simulation 2014 - 3
On Darboux polynomials and rational first integrals of the generalized Lorenz system Algaba, Antonio, Fernández-Sánchez, Fernando, Merino, Manuel, Rodríguez-Luis, Alejandro J., Bulletin des Sciences Mathematiques 2014 - 3
Comment on "Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems" [Appl. Math. Comput. 218 (2012) 11859–11870] Algaba, Antonio, Fernández-Sánchez, Fernando, Merino, Manuel, Rodríguez-Luis, Alejandro J., Applied Mathematics and Computation 2014 - 2
Comments on "Dynamics of the general Lorenz family" by Y. Liu and W. Pang Algaba, Antonio, Fernández-Sánchez, Fernando, Merino, Manuel, Rodríguez-Luis, Alejandro J., Nonlinear Dynamics 2014 - 1
Comments on "the Chen system revisited" Algaba, Antonio, Fernández-Sánchez, Fernando, Merino, Manuel, Rodríguez-Luis, Alejandro J., Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms 2014 - 1
Comments on "Non-existence of Shilnikov chaos in continuous-time systems". Algaba Durán, Antonio, Fernández Sánchez, Fernando, Merino Morlesín, Manuel, Rodríguez Luis, Alejandro José, Applied Mathematics and Mechanics 2013 - 0
Comment on `Šilnikov-type orbits of Lorenz-family systems' [Physica A 375 (2007) 438–446] Algaba, Antonio, Fernández-Sánchez, Fernando, Merino, Manuel, Rodríguez-Luis, Alejandro J., Physica A. Statistical Mechanics and its Applications 2013 - 4
Comment on "Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization" Algaba Durán, Antonio, Fernández Sánchez, Fernando, Merino Morlesín, Manuel, Rodríguez Luis, Alejandro José, Chaos, Solitons & Fractals 2013 - 0
The Lü system is a particular case of the Lorenz system. Algaba Durán, Antonio, Fernández Sánchez, Fernando, Merino Morlesín, Manuel, Rodríguez Luis, Alejandro José, PHYSICS LETTERS A 2013 - 12
Comments on the paper "Chaotic motions of a two-dimensional airfoil with cubic nonlinearity in supersonic flow" Algaba Durán, Antonio, Fernández Sánchez, Fernando, Merino Morlesín, Manuel, Rodríguez Luis, Alejandro José, Aerospace Science and Technology 2013 - 2
On Shil'nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System Algaba Durán, Antonio, Fernandez Sanchez, Fernando, Merino Morlesín, Manuel, Rodríguez Luis, Alejandro José, ASME Journal of Computational and Nonlinear Dynamics 2013 - 3
Chen's attractor exists if Lorenz repulsor exists: The Chen system is a special case of the Lorenz system. Algaba Durán, Antonio, Fernández Sánchez, Fernando, Merino Morlesín, Manuel, Rodríguez Luis, Alejandro José, CHAOS 2013 - 23
Comment on "Heteroclinic orbits in Chen circuit with time delay'' Antonio Algaba Durán, Fernando Fernández Sánchez, Manuel Merino Morlesín, Alejandro José Rodríguez Luis, Communications in Nonlinear Science and Numerical Simulation 2012 - 10
Comment on "Existence of heteroclinic orbits of the Shil'nikov type in a 3D quadratic autonomous chaotic system'' Antonio Algaba, Fernando Fernández-Sánchez, Manuel Merino, Alejandro J. Rodríguez-Luis, JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 2012 - 9
Rebuttal of "Existence of attractor and control of a 3D differential system'' by Z. Wang Antonio Algaba, Fernando Fernández-Sánchez, Manuel Merino, Alejandro J. Rodríguez-Luis, NONLINEAR DYNAMICS 2012 - 4
Comment on "Stability and chaos of a damped satellite partially filled with liquid" Antonio Algaba Durán, Fernando Fernández Sánchez, Manuel Merino Morlesín, Alejandro José Rodríguez Luis, ACTA ASTRONAUTICA 2012 - 4
Comments on "Analysis and application of a novel three-dimensional energy-saving and emission-reduction dynamic evolution system" Algaba Durán, Antonio, Fernandez Sanchez, Fernandez Sanchez, Fernando, Rodríguez Luis, Merino Morlesín, Manuel, ENERGY 2012 - 6
Reversible periodic orbits in a class of 3D continuous piecewise linear systems of differential equations Carmona, V., Fernández-García, S., Fernández-Sánchez, F., García-Medina, E., Teruel, A.E., Nonlinear Analysis: Theory, Methods & Applications. An International Multidisciplinary Journal 2012 - 4
Hopf Bifurcations and Their Degeneracies in Chua's Equation Antonio Algaba Durán, Manuel Merino Morlesín, Fernando Fernandez Sanchez, Alejandro Rodriguez Luis, International Journal of Bifurcation and Chaos 2011 - 0
Comment on "Sil'nikov chaos of the Liu system'' Antonio Algaba, Fernando Fernández-Sánchez, Manuel Merino, Alejandro J. Rodríguez-Luis, CHAOS 2011 - 9
Structure of Saddle-Node and Cusp Bifurcations of Periodic Orbits Near a Non-Transversal T-Point Antonio Algaba Durán, Fernando Fernandez Sanchez, Manuel Merino Morlesín, Alejandro Rodriguez Luis, Nonlinear Dinamics 2011 - 4
Analysis of the T-Point-Hopf Bifurcation With Z2-Symmetry: Application to Chua's Equation Antonio Algaba Durán, Fernando Fernandez Sanchez, Manuel Merino Morlesín, Alejandro Rodriguez Luis, International Journal of Bifurcation and Chaos 2010 - 2
Existence of Homoclinic Connections in Continuous Piecewise Linear Systems Victoriano Carmona Centeno, Fernando Fernandez Sanchez, Elisabeth García Medina, Antonio Teruel Aguilar, Chaos 2010 - 6
Analysis of the T-Point-Hopf Bifurcation Fernando Fernandez Sanchez, Emilio Freire Macias, Alejandro Rodriguez Luis, PHYSICA D-NONLINEAR PHENOMENA 2008 - 6
Existence of a Reversible T-Point Heteroclinic Cycle in a Piecewise Linear Version of the Michelson System Victoriano Carmona Centeno, Fernando Fernandez Sanchez, Antonio Teruel Aguilar, Siam Journal on Applied Dynamical Systems 2008 - 10