instituto de matemáticas universidad de sevilla
Antonio de Castro Brzezicki
imus-logo
F
Geometry of random surfaces and a non-linear Beltrami equation
Conversaciones Fluidas
Fecha: 25.04.2019 De 12.00 a 13.00
Lugar: Seminario I (IMUS), Edificio Celestino Mutis
Autor:
Organización:
Scaling limits of discrete random structures in two dimensions often posses some conformal invariance properties. This allows different methods from geometric analysis for their study. Random tilings are typical examples, presenting new and unexpected geometric phenomena.
 
In this presentation, based on joint work with E.Duse, I.Prause and X.Zhong, I show how to use the Beltrami differential equation to understand  the geometry of ordered and disordered (or frozen and liquid) regions for scaling limits of random tilings. 

Compártelo: