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Gröbner bases, Graver bases and Integer Optimization

Background from Algebraic Geometry

Gröbner bases

What are Gröbner bases?

They are a representation of an algebraic object

It gives a general method of computing with multivariate
polynomials

It generalises well-known methods:

Gaussian elimination
Euclidean algorithm
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Notation

k field (often algebraically closed)

xα = xα1
1 · · · xαn

n monomial in x1, . . . , xn

cxα c ∈ k term in x1, . . . , xn

f =
∑

α∈Zn
+
cαxα polynomial in n variables

k[x] = k[x1, . . . , xn] polynomial ring in n variables

An = An(k) affine space over k
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Monomial orders

Definition

A monomial order is a total order > on the sets of monomials xα

such that:

If xα > xβ and γ ∈ Zn
+ then xα+γ > xβ+γ

Any nonempty subset of monomials has a smallest element
under > (it is a well-ordering)

We often think of a monomial order as a total order on the set of
exponent vectors α ∈ Zn

+.
Being a well-ordering is equivalent to α > 0, for α 6= 0 (or xα > 1)
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Examples of monomial orders

Examples

Lexicographic order For every α, β ∈ Zn
+ we say α >lex β (or

xα >lex xβ) if the leftmost nonzero entry of α− β is positive.
That is:

α1 > β1, or α1 = β1 and α2 > β2, . . .

(1, 2, 0) >lex (1, 1, 3)

Graded lex order For every α, β ∈ Zn
+ we say α >grlex β if

|α| =
n∑

i=1

αi > |β| =
n∑

i=1

βi , or |α| = |β| and α >lex β

(0, 2, 5) >grlex (1, 2, 3)
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Using SAGE and monomial orders

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=’lex’)

sage: x > y

True

sage: x > y^2

True

sage: x > 1

True

sage: x^1*y^2 > y^3*z^4

True

sage: x^3*y^2*z^4 < x^3*y^2*z^1

False
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Using SAGE and monomial orders

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=’deglex’)

sage: x > y

True

sage: x > y^2*z

False

sage: x > 1

True

sage: x^1*y^2*z^3 > x^3*y^2*z^0

True

sage: x^2*y*z^2 > x*y^3*z

True
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More examples

Graded reverse lex orderFor every α, β ∈ Zn
+ we say

α >grevlex β if

|α| =
n∑

i=1

αi > |β| =
n∑

i=1

βi , or |α| = |β| and

the rightmost nonzero entry of α− β is negative
(5, 2, 0) >grevlex (2, 2, 3)

Vector induced order Let c ∈ Rn
+ for every α, β ∈ Zn

+ we
say α >c β if

c ′α > c ′β, or c ′α = c ′β and α >lex β

If c = (2, 3, 1) then (0, 3, 0) >c (2, 1, 1)
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Using SAGE and monomial orders

sage: P.<x,y,z>=PolynomialRing(QQ,3,order=’degrevlex’)

sage: x > y

True

sage: x > y^2*z

False

sage: x > 1

True

sage: x^1*y^5*z^2 > x^4*y^1*z^3

True

sage: x^2*y*z^2 > x*y^3*z

False
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Using SAGE and monomial orders

sage: P.<x,y,z> =

PolynomialRing(QQ,3,order=TermOrder(’wdeglex’,(1,2,3)))

sage: x > y

False

sage: x > x^2

False

sage: x > 1

True

sage: x^1*y^2 > x^2*z

False

sage: y*z > x^3*y

False
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Using SAGE and monomial orders

sage: P.<x,y,z>=

PolynomialRing(QQ,3,order=TermOrder(’wdegrevlex’,(1,2,3)))

sage: x > y

False

sage: x > x^2

False

sage: x > 1

True

sage: x^1*y^2 > x^2*z

True

sage: y*z > x^3*y

False
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More examples

Matrix induced order Let M be a square n × n matrix for
every α, β ∈ Zn

+ we say α >M β if

Mα >lex Mβ

Let >1 a monomial order on Zn
+ and >2 a monomial order on

Zm
+. The product order (or block order) >:= (>1, >2) on

Zn+m
+ is defined as: (α1, β1) > (α2, β2) if

α1 >1 α2 or α1 = α2 and β1 >2 β2
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Using SAGE and monomial orders

sage: m = matrix(2,[2,3,0,1]); m

[2 3]

[0 1]

sage: T = TermOrder(m); T

Matrix term order with matrix

[2 3]

[0 1]

sage: P.<a,b> = PolynomialRing(QQ,2,order=T)

sage: P

Multivariate Polynomial Ring in a, b over Rational Field

sage: a > b

False

sage: a^3 < b^2

True

sage: S = TermOrder(’M(2,3,0,1)’)

sage: T == S

True
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Using SAGE and monomial orders

sage: P.<a,b,c,d,e,f> =

PolynomialRing(QQ, 6,order=’degrevlex(4),neglex(2)’)

sage: a > c^4

False

sage: a > e^4

True

sage: e > f^2

False
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Using SAGE and monomial orders

sage: T1 = TermOrder(’degrevlex’,4)

sage: T2 = TermOrder(’neglex’,2)

sage: T = T1 + T2

sage: P.<a,b,c,d,e,f> = PolynomialRing(QQ, 6, order=T)

sage: a > c^4

False

sage: a > e^4

True
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Leading terms

Definition

Fix a monomial order > and let f ∈ k[x] be nonzero. Write

f = cαx
α + terms with exponent vectors β 6= α

such that c 6= 0 and xα > xβ wherever xβ appears in a nonzero
term of f , then:

LT (f ) = cxα = in(f ) is the leading term or initial term of f

LM(f ) = xα is the leading monomial of f

LC (f ) = c is the leading coefficient of f
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Using SAGE and monomial orders

sage: t = TermOrder(’negwdeglex’,(1,2,3))

sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)

sage: f=x^2+2*x*y^2; f.lt()

2*x*y^2

sage: f=x^2+2*x*y^2; f.lm()

x*y^2

sage: f=x^2+2*x*y^2; f.lc()

2
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Ideals

Definition

An ideal is a subset I ⊂ k[x] satisfying:

0 ∈ I
If f , g ∈ I then f + g ∈ I
If f ∈ I and h ∈ k[x], then hf ∈ I

Given an ideal I , we define an affine variety V (I )

V (I ) = {z ∈ An | f (z) = 0 for all f ∈ I}
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Ideals

The Hilbert Basis Theorem

Every ideal I ⊂ k[x] is finitely generated, i.e., there exists
g1, . . . , gt ∈ I such that

I =

{
t∑

i=1

higi | h1, . . . , ht ∈ k[x]

}

We note I = 〈g1, . . . , gt〉

If I = 〈g1, . . . , gt〉, then

V (I ) = {z ∈ An | gi (z) = 0 i = 0, . . . , t}
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Nullstellensatz

The Weak Nullstellensatz

Fix an ideal I ⊂ k[x] where k is algebraically closed

V (I ) = ∅ ⇔ I = k[x]

Hilbert’s Nullstellensatz

The polynomials f , f1, . . . fs ∈ k[x] satisfy the relation
f ∈ I (V (〈f1, . . . , fs〉))⇔ f m ∈ 〈f1, . . . , fs〉 for some m ≥ 1
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Division Algorithm

Given nonzero polynomials f , f1, . . . , fs ∈ k[x] and a monomial
order >, there exist r , q1, . . . , qs ∈ k[x] with the following
properties:

f = q1f1 + · · ·+ qs fs + r

No term of r is divisible by any of LT (f1), . . . , LT (fs)

LT (f ) = max{LT (qi )LT (fi ), qi 6= 0}

Definition

Any representation

f = q1f1 + · · ·+ qs fs

satisfying the third bullet is a standard representation of f
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Division Algorithm

Definition

Let f , g ∈ k[x] with LM(f ) = xα, LM(g) = xβ. Set
γ = lcm(α, β) = (max{α1, β1}, . . . ,max{αn, βn})
We define the S polynomial of f and g as

S(f , g) = xγ−αf − LC (f )

LC (g)
xγ−βg

Definition

Let f ∈ k[x], G ⊂ k[x] f is reduced wrt G if no monomial of f is
contained in 〈LM(g) | g ∈ G 〉
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Division Algorithm

Computing Normal Form;
Data: f ∈ k[x], G ⊂ k[x]
Result: NF (f ,G )
h = f ;
while h 6= 0 and Gh = {g ∈ G | LM(g) divides LM(h)} 6= ∅ do

choose g ∈ Gh;
h = S(h, g);

end
return h;
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Initial Ideal

Definition

Given an ideal I ⊂ k[x] and a monomial order >, the initial ideal is
the monomial ideal

in(I ) = 〈LT (f ) | f ∈ I 〉

If I = 〈f1, . . . , fs〉 then

〈LT (f1), . . . , LT (fs)〉 ⊂ in(I )

though equality need not occur.
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Gröbner bases

Definition

Given an ideal I ⊂ k[x] a finite set G ⊂ I\{0} is a Gröbner basis
for I under > if

〈LT (g) | g ∈ G 〉 = in(I )

Definition

A Gröbner basis G is reduced if for every g ∈ G

LT (g) divides no term of any element of G\{g}
LC (g) = 1

Theorem

Every ideal has a unique reduced Gröbner basis under >
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Gröbner bases

Property

Given an ideal I ⊂ k[x] and G ⊂ I a Gröbner basis.

f ∈ I ⇔ NF (f ,G ) = 0

If NF (−,G ) is reduced then it is unique

Buchberger’s Criterion

Given an ideal I ⊂ k[x] and G ⊂ I . The following are equivalent:

G is a Gröbner basis of I

NF (f ,G ) = 0 for all f ∈ I

I = 〈G 〉 and NF (S(g , g ′),G ) = 0 for all g , g ′ ∈ G
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Using SAGE and ideals

sage: R= PolynomialRing(QQ,’x’,5,order=’lex’)

sage: I=R.ideal([x0-3*x1+5*x2-7*x3-5,

x1+2*x3-x4+1,x0-2*x1+4*x3-5*x4,x2+x3+x4])

sage: B=I.groebner_basis()

sage: B

[x0 + 3, x1 + 15/14*x4 + 17/14,

x2 - 5/14*x4 - 15/14, x3 - 5/7*x4 - 1/7]
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Using SAGE and ideals

sage: x,y,z = QQ[’x,y,z’].gens()

sage: I = ideal(x^5 + y^4 + z^3 - 1,

x^3 + y^3 + z^2 - 1)

sage: B = I.groebner_basis()

sage: B

[y^6+x*y^4+2*y^3*z^2+x*z^3+z^4-2*y^3-2*z^2-x+1,

x^2*y^3-y^4+x^2*z^2-z^3-x^2+1,

x^3+y^3+z^2-1]

sage: f,g,h = B

sage: (2*x*f + g).reduce(B)

0
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Using SAGE and ideals

sage: (2*x*f + g) in I

True

sage: (2*x*f + 2*z*h + y^3).reduce(B)

y^3

sage: (2*x*f + 2*z*h + y^3) in I

False
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Nullstellensatz and Gröbner bases

Theorem

Given an ideal I ⊂ k[x] where k is algebraically closed, the
following are equivalent:

I 6= k[x]

1 /∈ I

V (I ) 6= ∅
I has a Gröbner basis consisting of nonconstant polynomials

I has a reduced Gröbner basis 6= {1}



Gröbner bases, Graver bases and Integer Optimization

Background from Algebraic Geometry

Nullstellensatz and Gröbner bases, 0 dimensional case

Theorem

Given an ideal I ⊂ k[x] where k is algebraically closed, the
following are equivalent:

V (I ) ⊂ An is finite

k[x]/I is a finite-dimensional vector space

Only finitely many monomials are not in in(I )
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Using SAGE and ideals

sage: x,y,z = QQ[’x,y,z’].gens()

sage: I=ideal(x^2*z-y,x^2+x*y-y*z,x*z^2+x*z-x)

sage: B=I.groebner_basis()

sage: B

[x^2 - y*z - y, x*y + y, x*z^2 + x*z - x,

y^2 - y*z, y*z^2 + y*z - y]

sage: I.dimension()

1
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Elimination

Definition

Given an ideal I ⊂ k[x] the l-th elimination ideal Il is

Il = I ∩ k[xl+1, . . . , xn]

The Elimination Theorem

Given an ideal I ⊂ k[x] and let G be the Gröbner basis with
respect to the lexicographic order, where x1 > x2 > . . . > xn. Then
for every 0 ≤ l ≤ n − 1 the set

Gl = G ∩ k[xl+1, . . . , xn]

is a Gröbner basis of the l-th elimination ideal Il
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Elimination

The Extension Theorem

Let I = 〈q1, . . . , qs〉 ⊂ k[x] and let I1 be the first elimination ideal
of I . For each 1 ≤ i ≤ s we can write qi in the form

qi = hi (x2, . . . , xn)xNi
1 + terms with x1 smaller degree than Ni

where Ni ≥ 0 and hi 6= 0.
If

(a2, . . . , an) ∈ V (I1)

and
(a2, . . . , an) /∈ V (h1, . . . , hs),

then there exists a1 ∈ k such that (a1, a2, . . . , an) ∈ V (I )



Gröbner bases, Graver bases and Integer Optimization

Background from Algebraic Geometry

Using SAGE and ideals

sage: x,y,z = QQ[’x,y,z’].gens()

sage: I=ideal(x^2*z-1,x^2+x*y-y*z,x*z^2+x*z-x)

sage: B=I.groebner_basis()

sage: B

[x + (-2)*y*z + 2*y + z, y^2+y*z+y-z-3/2, z^2+z-1]

sage: I.dimension()

0
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Applications of Gröbner bases

Stable sets

Stable sets

Let G = (V ,E ) be a graph. For a given positive integer k ,
consider the following polynomial system:

x2
i − xi = 0, ∀i ∈ V

xixj = 0, ∀(i , j) ∈ E ,∑
i∈V

xi = k

This system is feasible if and only if G has a stable set of size k .
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1

2

34

5
6

7

89

10

Is there a stable set of size 5 for the Petersen graph?
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Applications of Gröbner bases

Using SAGE and ideals

sage: R.<x1,x2,x3,x4,x5,x6,x7,x8,x9,x10> =

PolynomialRing(QQ,order=’lex’)

sage: I=R.ideal([x1^2-x1,x2^2-x2,x3^2-x3,

x4^2-x4,x5^2-x5,x6^2-x6,x7^2-x7,x8^2-x8,

x9^2-x9,x10^2-x10,x1*x2,x1*x5,x1*x6,x2*x3,

x2*x7,x3*x4,x3*x8,x4*x9,x4*x5,x5*x10,

x6*x8,x6*x9,x7*x9,x7*x10,x8*x10,

x1+x2+x3+x4+x5+x6+x7+x8+x9+x10-5])

sage: B=I.groebner_basis()

sage: B

[1]
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sage: I=R.ideal([x1^2-x1,x2^2-x2,x3^2-x3,

x4^2-x4,x5^2-x5,x6^2-x6,x7^2-x7,x8^2-x8,

x9^2-x9,x10^2-x10,x1*x2,x1*x5,x1*x6,x2*x3,

x2*x7,x3*x4,x3*x8,x4*x9,x4*x5,x5*x10,

x6*x8,x6*x9,x7*x9,x7*x10,x8*x10,

x1+x2+x3+x4+x5+x6+x7+x8+x9+x10-4])

sage: B=I.groebner_basis()

sage: B

[x1 -x8-2*x9*x10+x9, x2+2*x9*x10-x9-x10,

x3+x8-x9*x10+x10-1, x4-x8+x9-x10,

x5+x8+x9*x10-x9+x10-1,

x6+x8+x9*x10-1, x7-x9*x10+x9+x10-1,

x8^2-x8, x8*x9+x9*x10-x9,

x8*x10, x9^2-x9, x10^2-x10]

sage: I.dimension()

0
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Applications of Gröbner bases

sage: I.normal_basis()

[x9*x10, x10, x9, x8, 1]

There are 5 solutions. We can construct them from the Gröbner
basis. Looking at the normal basis, we can start fixing x10 = 1
then:
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Applications of Gröbner bases

sage: I=R.ideal([x1^2-x1,x2^2-x2,x3^2-x3,

x4^2-x4,x5^2-x5,x6^2-x6,x7^2-x7,x8^2-x8,

x9^2-x9,x10^2-x10,x1*x2,x1*x5,x1*x6,x2*x3,

x2*x7,x3*x4,x3*x8,x4*x9,x4*x5,x5*x10,

x6*x8,x6*x9,x7*x9,x7*x10,x8*x10,

x1+x2+x3+x4+x5+x6+x7+x8+x9+x10-4,x10-1])

sage: B=I.groebner_basis()

sage: B

[x1 -x9, x2+x9-1, x3-x9, x4+x9-1, x5,

x6+x9-1, x7, x8, x9^2-x9, x10-1]

sage: I.normal_basis()

[x9, 1]

If x9 = 1, we have the solution {1, 3, 9, 10}, if x9 = 0 the solution
is {2, 4, 6, 10}
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Applications of Gröbner bases

1

2
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7

89
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Applications of Gröbner bases

If we choose x10 = 0

sage: I=R.ideal([x1^2-x1,x2^2-x2,x3^2-x3,

x4^2-x4,x5^2-x5,x6^2-x6,x7^2-x7,x8^2-x8,

x9^2-x9,x10^2-x10,x1*x2,x1*x5,x1*x6,x2*x3,

x2*x7,x3*x4,x3*x8,x4*x9,x4*x5,x5*x10,

x6*x8,x6*x9,x7*x9,x7*x10,x8*x10,

x1+x2+x3+x4+x5+x6+x7+x8+x9+x10-4,x10])

sage: B=I.groebner_basis()

sage: B

[x1 -x8+x9, x2-x9, x3+x8-1, x4-x8+x9,

x5+x8-x9-1, x6+x8-1, x7+x9-1, x8^2-x8,

x8*x9-x9, x9^2-x9, x10]

sage: I.normal_basis()

[x9, x8, 1]

If x9 = 1, we have the solution {2, 5, 8, 9}
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Applications of Gröbner bases
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Applications of Gröbner bases

If we choose x10 = 0 and x9 = 0

sage: I=R.ideal([x1^2-x1,x2^2-x2,x3^2-x3,

x4^2-x4,x5^2-x5,x6^2-x6,x7^2-x7,x8^2-x8,

x9^2-x9,x10^2-x10,x1*x2,x1*x5,x1*x6,x2*x3,

x2*x7,x3*x4,x3*x8,x4*x9,x4*x5,x5*x10,

x6*x8,x6*x9,x7*x9,x7*x10,x8*x10,

x1+x2+x3+x4+x5+x6+x7+x8+x9+x10-4,x10,x9])

sage: B=I.groebner_basis()

sage: B

[x1-x8, x2, x3+x8-1, x4-x8, x5+x8-1,

x6+x8-1, x7-1,x8^2-x8, x9, x10]

sage: I.normal_basis()

[x8, 1]

If x8 = 1, we have the solution {1, 4, 7, 8}, if x8 = 0 the solution is
{3, 5, 6, 7}
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Applications of Gröbner bases
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Applications of Gröbner bases

k-Colorable graphs

k-Colorable graphs

Let G = (V ,E ) be a graph. For a positive integer k , consider the
following polynomial system of |V |+ |E | equations:

xki − 1 = 0, ∀i ∈ V

k−1∑
s=0

xk−1−s
i x sj = 0, ∀(i , j) ∈ E ,

The graph G is k-colorable if and only if this system has a complex
solution. Furthermore, when k is odd, G is k-colorable if and only
if this system has a common root over F2, the algebraic closure of
the finite field with two elements.
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Applications of Gröbner bases

k-Colorable graphs

We are using the Nullstellensatz over C an algebraically closed
ring. The equation xki − 1 = 0, assign a k-th root of unity to each
vertex (a color).
If we take an edge (i , j), as these vertices have a color,

0 = 1− 1 = xki − xkj = (xi − xj)(xk−1
i + xk−2

i xj + · · ·+ xk−1
j )

As those vertices are joined by an edge they have different colors,
then the second factor must be zero
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Applications of Gröbner bases

k-Colorable graphs

Conversely, if there is solution of the above polynomials, we have a
color for each vertex. We need to prove that any adjacent vertex
has different color. If (i , j) is an edge and both vertices have the
same root of unity β, then

xk−1
i +xk−2

i xj +· · ·+xk−1
j = βk−1 +βk−1 +· · ·+βk−1 = kβk−1 = 0

Over C clearly β = 0.
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Applications of Gröbner bases
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Is the Petersen graph 3-colorable?
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Applications of Gröbner bases

Using SAGE and ideals

sage: R.<x1,x2,x3,x4,x5,x6,x7,x8,x9,x10> =

PolynomialRing(QQ,order=’lex’)

sage: I=R.ideal([x1^3-1,x2^3-1,x3^3-1,

x4^3-1,x5^3-1,x6^3-1,x7^3-1,x8^3-1,

x9^3-1,x10^3-1,x1^2+x1*x2+x2^2,

x1^2+x1*x5+x5^2,

...

x8^2+x8*x10+x10^2])

sage: B=I.groebner_basis()

sage: B

Polynomial Sequence with 33 Polynomials in 10 Variables

sage: I.dimension()

0

sage: I.normal_basis()

Polynomial Sequence with 120 Polynomials in 10 Variables
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Applications to binary optimization

Applications to binary optimization

Let A ∈ Zm×n and b ∈ Zm and consider the system

Ax = b
x ∈ {0, 1}n

We can use the polynomial x2
i − xi = 0 to assure xi ∈ {0, 1}

Let f1 = aix− bi and gi = x2
i − xi

Then
I = 〈f1, . . . , fm, g1, . . . , gn〉
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Applications to binary optimization

Feasible and Gröbner basis;
Data: A ∈ Zm×n, b ∈ Zm

Result: A feasible solution (a1, . . . , an) or a infeasibility certificate
Compute G Gröbner basis of the ideal J for lex order x1 > . . . > xn;
if G 6= {1} then

for 1 ≤ l ≤ n consider Gl = G ∩ k[xl+1, . . . , xn];
Starting from index n − 1;
Find an ∈ V (Gn−1);
Extend an to (an−1, an) such that (an−1, an) ∈ V (Gn−2);
. . . ;
return (a1, . . . , an);

else
There is no feasible solution

end
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Applications to binary optimization

Using SAGE and binary optimization

Consider the system

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 15x6 = 15 x ∈ {0, 1}6

sage: R.<x1,x2,x3,x4,x5,x6> = PolynomialRing(QQ,order=’lex’)

sage: I=R.ideal([x1^2-x1,x2^2-x2,x3^2-x3,x4^2-x4,

x5^2-x5,x6^2-x6,x1+2*x2+3*x3+4*x4+5*x5+15*x6-15])

sage: B=I.groebner_basis()

sage: B

[x1+x6-1, x2+x6-1, x3+x6-1, x4+x6-1, x5 +x6-1,

x6^2 -x6]
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Applications to binary optimization

Using SAGE and binary optimization

Consider the system

x1 + 2x2 + 3x3 + 4x4 + 6x5 = 6 x ∈ {0, 1}5

sage: R.<x1,x2,x3,x4,x5> = PolynomialRing(QQ,order=’lex’)

sage: I=R.ideal([x1^2-x1,x2^2-x2,x3^2-x3,

x4^2-x4,x5^2-x5,x1+2*x2+3*x3+4*x4+6*x5-6])

sage: B=I.groebner_basis()

sage: B

[x1 + x4 + x5 - 1, x2 + x5 - 1, x3 + x4 + x5 - 1,

x4^2 - x4, x4*x5, x5^2- x5]
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Applications to binary optimization

Applications to binary optimization

We next use Gröbner bases to solve the optimization problem

min c′x
subject to Ax = b

x ∈ {0, 1}n

We can use the polynomial h = y −
∑n

j=1 cjxj
We let f1 = aix− bi and gi = x2

i − xi
Then

I = 〈f1, . . . , fm, g1, . . . , gn, h〉

and a term order such that x1 > . . . > xn > y
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Applications to binary optimization

Consider the problem

min x1 + 2x2 + 3x3 + 3x4

subject to x1 + x2 + 2x3 + x4 = 3
x ∈ {0, 1}4

sage: R.<x1,x2,x3,x4,y> = PolynomialRing(QQ,order=’lex’)

sage: I=R.ideal([x1^2-x1,x2^2-x2,x3^2-x3,x4^2-x4,

x1+x2+2*x3+x4-3,y-x1-2*x2-3*x3-3*x4])

sage: B=I.groebner_basis()

sage: B

[x1 + x3 - 1/2*y^2 + 11/2*y - 16,

x2 + x3 + y^2 - 10*y + 23,

x3^2 - x3,

x3*y - 6*x3 - y + 6,

x4 - 1/2*y^2 + 9/2*y - 10,

y^3 - 15*y^2 + 74*y - 120]
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Applications to binary optimization

Applications to optimization

min c′x
subject to Ax = b

x ∈ Zn

with A ∈ Zm×n
+ , b ∈ Zm

+ c ∈ Zn
+. We introduce a new variable zi

for the i-constraint, so

zai1x1+...+ainxn
i = zbii

m∏
i=1

n∏
j=1

(
z
aij
i

)xj =
n∏

j=1

m∏
i=1

(
z
aij
i

)xj =
n∏

j=1

(
m∏
i=1

z
aij
i

)xj

=
m∏
i=1

zbii
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Applications to binary optimization

Applications to optimization

We define the mapping φ : k[w1, . . . ,wn]→ k[z1, . . . , zm] such that

φ(wj) =
m∏
i=1

z
aij
i

then, for g ∈ k[w]

φ(g(w1, . . . ,wn)) = g(φ(w1), . . . , φ(wn))

Proposition

A vector x ∈ Zn
+ is feasible if and only if φ maps the monomial

w x1
1 · · ·w xn

n to the monomial zb
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Applications to binary optimization

Applications to optimization

If we consider the problem

4x1+ 5x2 +x3 = 37
2x1+ 3x2 +x4 = 20

The mapping is given by

φ(w1) = z4
1 z

2
2 φ(w2) = z5

1 z
3
2 φ(w3) = z1 φ(w4) = z2

The set of feasible solutions are all the integers points
(x1, x2, x3, x4) such that

φ(w x1
1 w x2

2 w x3
3 w x4

4 ) = z37
1 z20

2



Gröbner bases, Graver bases and Integer Optimization

Applications to binary optimization

Applications to optimization

Let fj = φ(wj) =
∏m

i=1 z
aij
i , we can consider the ideal

I = 〈f1 − w1, . . . , fn − wn〉 ⊂ k[z,w]

and a term order, being an elimination order of z

sage: R.<z1,z2,w1,w2,w3,w4> =

PolynomialRing(QQ,order=’lex’)

sage: I=R.ideal([z1^4*z2^2-w1,z1^5*z2^3-w2,z1-w3,z2-w4])

sage: B=I.groebner_basis()

sage: B

[z1 - w3, z2 - w4, w1 - w3^4*w4^2, w2 - w3^5*w4^3]

sage: (z1^37*z2^20).reduce(B)

w3^37*w4^20
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Applications to binary optimization

sage: T1 = TermOrder(’lex’,2)

T2 = TermOrder(’wdeglex’,(1,2,3,4))

sage: R.<z1,z2,w1,w2,w3,w4> =

PolynomialRing(QQ,order=T1+T2)

sage: I=R.ideal([z1^4*z2^2-w1,z1^5*z2^3-w2,z1-w3,z2-w4])

sage: B=I.groebner_basis()

sage: B

[z1-w3, z2-w4, w3^4*w4^2-w1,

w2*w3^3*w4-w1^2, w1^5*w4^2-w2^4,

w2^2*w3^2 - w1^3, w2^3*w3 - w1^4*w4, w1*w3*w4 - w2]

sage: (z1^37*z2^20).reduce(B)

w1^8*w2*w4
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Applications to binary optimization

Solving LIPP;
Data: A ∈ Zm×n

+ , b ∈ Zm
+,c ∈ Zn

+

Result: The solution (x∗1 , . . . , x
∗
n ) or a infeasibility certificate

Compute G Gröbner basis of the ideal I for term order such that
z1 > . . . > zm > w1 > . . .wn and c′x1 > c′x2 then wx1 > wx2 ;

if g = NF (
∏m

i=1 z
bi
i ,G ) ∈ k[w] then

g = w
x∗1
1 · · ·w

x∗n
n ;

return (x∗1 , . . . , x
∗
n );

else
There is no feasible solution

end
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Applications to binary optimization

Applications to optimization

If we consider the problem

2x1+ −x2 +x3 = 4
−x1+ 2x2 = 5

The mapping can be extended by

φ(w1) =
z2

1

z2
φ(w2) =

z2
2

z1
φ(w3) = z1

So
J = 〈w1z2 − z2

1 ,w2z1 − z2
2 ,w3 − z1〉
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Applications to binary optimization

sage: R.<z1,z2,w1,w2,w3> =

PolynomialRing(QQ,order=’lex’)

sage: I=R.ideal([z1^2-w1*z2,z2^2-w2*z1,z1-w3])

sage: B=I.groebner_basis()

sage: B

[z1-w3, z2^2-w2*w3, z2*w1-w3^2,

z2*w3^2-w1*w2*w3, w1^2*w2*w3 -w3^4]

sage: (w1^2*w2-w3^3).reduce(B)

w1^2*w2-w3^3
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Applications to binary optimization

Applications to optimization

We consider now the general case

min c′x
subject to Ax = b

x ∈ Zn

with A ∈ Zm×n, b ∈ Zm c ∈ Zn
+. The mapping

φ : k[w1, . . . ,wn]→ k[z1, . . . , zm, z
−1
1 , . . . , z−1

m ] such that

φ(wj) =
m∏
i=1

z
aij
i

We can always write any column aj = a+
j − a−j with a+

j , a
−
j ≥ 0

We introduce the polynomials:

I = 〈za
−
j wj − za

+
j , 1− tz1 · · · zm〉



Gröbner bases, Graver bases and Integer Optimization

Applications to binary optimization

sage: R.<t,z1,z2,w1,w2,w3> =

PolynomialRing(QQ,order=’lex’)

sage: I=R.ideal([z1^2-w1*z2,z2^2-w2*z1,z1-w3,1-t*z1*z2])

sage: B=I.groebner_basis()

sage: B

[t*w1*w2-1, t*w2*w3^2-z2, t*w3^3-w1, z1 -w3, z2^2-w2*w3,

z2*w1-w3^2, z2*w3 - w1*w2, w1^2*w2 - w3^3]

sage: (w1^2*w2-w3^3).reduce(B)

0
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Applications to binary optimization

sage: T1 = TermOrder(’lex’,3)

T2 = TermOrder(’wdeglex’,(1,2,3))

sage: R.<t,z1,z2,w1,w2,w3>=PolynomialRing(QQ,order=T1+T2)

sage: I=R.ideal([z1^2-w1*z2,z2^2-w2*z1,z1-w3,1-t*z1*z2])

sage: B=I.groebner_basis()

sage: B

[t*w2*w3^2-z2, t*w1*w2-1, z1-w3, z2^2-w2*w3,

z2*w3-w1*w2, z2*w1-w3^2, w3^3-w1^2*w2]

sage: (z1^4*z2^5).reduce(B)

w1^3*w2^4*w3^2
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Applications to binary optimization

Improving the algorithm

We are considering

I = 〈za
−
j wj − za

+
j , 1− tz1 · · · zm〉

Given G a Gröbner basis with respect to a term order which
eliminates t and z we have that G ∩ k[w] is a Gröbner basis of the
ideal:

I ∩ k[w] = IA

Given g(w) ∈ I ∩ k[w]⇒ g(w) ∈ ker(φ) = IA
This ideal is called the toric ideal of A and it does not depend on
the right hand side of the constraints
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Applications to binary optimization

Improving the algorithm

Proposition

The toric ideal IA is a k-vector space spanned by the binomials:

{xu − xv : Au = Av, u, v ∈ Zn
+}

and therefore

IA = 〈xu − xv : Au = Av, u, v ∈ Zn
+〉
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Applications to binary optimization

Improving the algorithm

Using Hilbert’s basis theorem, there exist a finite number of
binomials which generate IA. We can restrict to binomials xu − xv

with disjoint support, that is, supp(u) ∩ supp(v) = ∅. If not

gcd(xu, xv) = xγ ⇒ xu−γ − xv−γ ∈ IA

can replace the previous element in the set of generators. Any
w ∈ ker(A) ∩ Zn can be expressed as a binomial with disjoint
support

xw
+ − xw

−
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Applications to binary optimization

Improving the algorithm

Fixed > a term order and c ∈ Rn
+, we define the product order >c

as

α >c β ⇔
{

c′α > c′β or
c′α = c′β and α > β

Theorem

Let > be any term order, A ∈ Zm×n a fixed matrix, and c ∈ Rn
+ a

fixed cost vector. Moreover, let G>c be the reduced minimal
Gröbner basis of IA with respect to >c. Then for any right-hand
side vector b and any nonoptimal feasible solution z0 there is some
binomial xu − xv ∈ G>c such that z0 − u + v is a better feasible
solution than z0.
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Applications to binary optimization

Improving the algorithm

During the Buchberger algorithm, one must check whether the
S-polynomial of every critical pair reduces to 0. Checking
reduction to 0 is computationally expensive.
The project-and-lift algorithms to compute generating sets and
Gröbner bases of lattice ideals are implemented in the software
package 4ti2

4ti2 can be called from sage
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Applications to binary optimization

sage: from sage.interfaces.four_ti_2 import four_ti_2

sage: four_ti_2.write_matrix([[2,-1,1],[-1,2,0]],

"test_file.mat")

sage: four_ti_2.write_matrix([[1,2,3]], "test_file.cost")

sage: four_ti_2.call("groebner", "test_file", False)

sage: four_ti_2.read_matrix("test_file.gro")

[-2 -1 3]
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Applications to binary optimization

We are interested in solving the minimum number of nickels and
quarters, such that using pennies (1ct), nickels (5ct), dimes (10ct)
and quarters (25ct), they sum up 99 cents and they are exactly 11
coins, that is:

min x2 + x4

subject to x1 + x2 + x3 + x4 = 11
x1 + 5x2 + 10x3 + 25x4 = 99
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Applications to binary optimization

sage: from sage.interfaces.four_ti_2 import four_ti_2

sage: four_ti_2.write_matrix([[1,1,1,1],[1,5,10,25]],

"4coins.mat")

sage: four_ti_2.write_matrix([[0,1,0,1]],"4coins.cost")

sage: four_ti_2.call("groebner", "4coins", False)

sage: four_ti_2.write_matrix([[4,4,0,3]],"4coins.feas")

sage: four_ti_2.call("normalform","4coins")

sage: four_ti_2.read_matrix("4coins.nf")

[4 1 4 2]
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Walk-back for Non Linear Integer Programming

Nonlinear integer programming with linear objective function

In this talk we introduce some refinements of a general setting to
treat the following problem (P):

min c′x,

subjecto to Ax = b
g1(x) ≤ C1
...
gm(x) ≤ Cm,

x = (x1, . . . , xn)′ ∈ Zn
≥0, m ≥ 1.

with A an integer matrix, a nonlinear integer programming problem
with linear objective function.

Our contributions give an alternative to treat real size problems in
this form.
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Walk-back for Non Linear Integer Programming

Tayur, Thomas and Natraj ’1995

Our initial inspiration

Tayur, Thomas and Natraj, in An algebraic geometry algorithm for
scheduling in presence of setups and correlated demands [Math.
Programming ’1995], presented a way of providing an exact
solution for a class of stochastic integer programming problem.

Their method can be generalized, in principle, to any (P) as the
one described before. They used an idea of Sturmfels in Convex
Polytopes to visit all the feasible points of a linear integer
programming problem.
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Programming ’1995], presented a way of providing an exact
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Walk-back for Non Linear Integer Programming

Tayur, Thomas and Natraj ’1995

The method is based on:

The calculation of a test set for a linear subproblem (LP) of
(P).

An inverse search process, called walk-back, in order to reach,
starting at the optimum of (LP), the optimum of (P).
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Walk-back for Non Linear Integer Programming

Walk-back: test set

Test-sets [cf. Schrijver ’1998]

Given a integer linear programming

min{c′x | Ax = b, x ∈ Zn
≥0}

there exists a finite set T = {t1, . . . , tN} (depending only on A and
c′) that assures that a feasible solution x? is optimal if and only if

c′(x? + ti ) ≥ c′x?

whenever (x? + ti ) is feasible, i = 1, . . . ,N. Such a T is called a
test-set with respect to (A, c′).
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Walk-back for Non Linear Integer Programming

Properties of test sets

A test set provides a method which solves an IPP, given a
feasible point

At each step, there is an element of the test set which
improves the cost, or there is no improvement, so we have
reached the optimum

The process ends whenever the cost is bounded

Algebraic test set

Gröbner basis of toric ideal IA with respect to weighted orders for c
are test sets
This step may be the bottleneck
In some cases a closed formula for the test set can be given.



Gröbner bases, Graver bases and Integer Optimization

Walk-back for Non Linear Integer Programming

Properties of test sets

A test set provides a method which solves an IPP, given a
feasible point

At each step, there is an element of the test set which
improves the cost, or there is no improvement, so we have
reached the optimum

The process ends whenever the cost is bounded

Algebraic test set
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Gröbner bases, Graver bases and Integer Optimization

Walk-back for Non Linear Integer Programming

α

β
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Solving (P)

Let c0 be the cost for y0 feasible point for (P)

We calculate β optimum for (LP).

If β is feasible for (P), it is optimum for (P).

If β is not feasible for (P), we use the reverse skeleton G′>c
.

For any γ obtained from G′>c
:

If c(γ) > c0, we prune the branch
If γi < 0 we prune the branch
If γ is feasible for (P), and c(γ) < c0, we actualize c0 and y0.
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Gröbner bases, Graver bases and Integer Optimization

Walk-back for Non Linear Integer Programming

β
y0
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Advantages and disadvantages of the search

Advantages

The walk back gives, in an ordered way by the cost, all the
feasible points of (P).

A new feasible point y0 which improves the cost, discards all
the pending nodes of greater or equal cost.

Disadvantages

If the feasible points of (P) are very far from β (optimum for
(LP)), the number of nodes to be processed is huge.

If we can add constraints which shrink the feasible region, the
test set changes, and the size may increase



Gröbner bases, Graver bases and Integer Optimization

Walk-back for Non Linear Integer Programming

Advantages and disadvantages of the search

Advantages

The walk back gives, in an ordered way by the cost, all the
feasible points of (P).

A new feasible point y0 which improves the cost, discards all
the pending nodes of greater or equal cost.

Disadvantages

If the feasible points of (P) are very far from β (optimum for
(LP)), the number of nodes to be processed is huge.

If we can add constraints which shrink the feasible region, the
test set changes, and the size may increase
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Problems in the search

Breadth First Search

Basically, the Walk-back method performs a Breadth First Search
using the test set.

Sturmfels en “Gröbner bases and Convex polytopes”

“One drawback of Algorithm 5.7 as presented is that the set
Active can grow very large during the computation. This problem
can be resolved by applying the “reverse search” technique of (Avis
& Fukuda 1992). The reserve search variant requires no
intermediate storage whatsoever, and it runs in linear time in the
size of the output”
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Improving the search

Processing

The size of the Active nodes list grows very quickly

If we order them by cost, the computational cost is very high

It takes a long time to reach the best points

We need to order the pending nodes list with a balance
between costs and feasibility for (P).



Gröbner bases, Graver bases and Integer Optimization

Walk-back for Non Linear Integer Programming

Improving the search

Processing

The size of the Active nodes list grows very quickly

If we order them by cost, the computational cost is very high

It takes a long time to reach the best points

We need to order the pending nodes list with a balance
between costs and feasibility for (P).



Gröbner bases, Graver bases and Integer Optimization

Walk-back for Non Linear Integer Programming

Improving the search

Processing

The size of the Active nodes list grows very quickly

If we order them by cost, the computational cost is very high

It takes a long time to reach the best points

We need to order the pending nodes list with a balance
between costs and feasibility for (P).
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Notation

(P) min c ′x
x ∈ A
x ∈ B

(P) min c ′x
Ax = b
g1(x) ≤ C1
...
gm(x) ≤ Cm

(LP) min c ′x
x ∈ A

(LP) min c ′x
Ax = b



Gröbner bases, Graver bases and Integer Optimization

Walk-back for Non Linear Integer Programming

Notation

(P) min c ′x
x ∈ A
x ∈ B

(P) min c ′x
Ax = b
g1(x) ≤ C1
...
gm(x) ≤ Cm

(LP) min c ′x
x ∈ A

(LP) min c ′x
Ax = b
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Penalized cost function

Penalized cost function

cp(x) = c(x) + P(x)

P(x) = p(d(x ,B)), d distance from x to B.

If B is given by gi (x) ≤ Ci : P(x) =
∑

max(gi (x)− Ci , 0)
cp(x) = c(x) + µP(x) (static penalization)
r(x) = (max(g1(x)− C1, 0), . . . ,max(gm(x)− Cm), 0)
cp(x) = c(x) + λ(t) ‖ r(x) ‖ (adaptive penalization)

cp(x) = c(x) · (2− D(x))

D(x) = (
∏

di (x))1/m

di (x) =

{
1 if gi (x) ≤ Ci∣∣∣ Ci

gi (x)

∣∣∣ if gi (x) > Ci
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Application: Reliability

Series-parallel systems

r11 r21 rn1

r12 r22 rn2

...
...

· · · ...

r1k1 r2k2 rnkn

x1j x2j xnj

R(x) =
n∏

i=1

(1−
kj∏
j=1

(1− rij)
xij )
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Application: Reliability

Problem formulation

(RP) min
∑

i ,j cijxij

s.t. R(x) =
∏n

i=1(1−
∏kj

j=1(1− rij)
xij ) ≥ R0,

0 ≤ xij ≤ uij∑
j xij ≥ 1

(LRP) min
∑

i ,j cijxij

0 ≤ xij ≤ uij∑
j xij ≥ 1



Gröbner bases, Graver bases and Integer Optimization

Walk-back for Non Linear Integer Programming

Application: Reliability

Problem formulation

(RP) min
∑

i ,j cijxij

s.t. R(x) =
∏n

i=1(1−
∏kj

j=1(1− rij)
xij ) ≥ R0,

0 ≤ xij ≤ uij∑
j xij ≥ 1

(LRP) min
∑

i ,j cijxij

0 ≤ xij ≤ uij∑
j xij ≥ 1
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Application: Reliability

Test set

(LRP) min
∑n

i=1

∑ki
j=1 cijxij

s.t. ∑ki
j=1 xij − di = 1, i = 1, . . . , n,

xij + tij = uij , i = 1, . . . , n,
j = 1, . . . , ki ,

G = {xikdi − tik , xiqtip − xiptiq} ciq > cip
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Application: Reliability

Main strategy

1 Starting from the optimum of (LP) we use the reverse test set
to walk back into the feasible region of (P).

2 We calculate a feasible point y0 for (RP), with cost c0

3 Given a new node w, with reliability Rw we order the active
nodes by

cp(w) = ct ·w + µ ·max{0,R0 − Rw}

with

µ =
cY − cβ

R0 − Rβ

cY best cost for a feasible point for (RP), initially cY = c0
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nodes by

cp(w) = ct ·w + µ ·max{0,R0 − Rw}

with

µ =
cY − cβ

R0 − Rβ

cY best cost for a feasible point for (RP), initially cY = c0
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Improving the process

Advantages

It improves the “naked” walk-back method

The process reaches very quickly a very good point

Drawbacks

The optimality certification is very slow due to the list of
pending nodes.

We can combine our method with a Breadth First Search, to
improve the performance of the pending nodes
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Gröbner bases, Graver bases and Integer Optimization

Walk-back for Non Linear Integer Programming

Application: Reliability

Improving the process

Advantages

It improves the “naked” walk-back method

The process reaches very quickly a very good point

Drawbacks

The optimality certification is very slow due to the list of
pending nodes.

We can combine our method with a Breadth First Search, to
improve the performance of the pending nodes
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3 Given a new node w, with reliability Rw we order the active
nodes by

cp(w) =

{
ct ·w + µ ·max{0,R0 − Rw} if visited nodes ≤ L
−ct ·w if visited nodes > L
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Computational results

Table: Correlation, high reliabilities
rij ∈ [0.99, 0.998], cij ∈ [10, 20], uij = 4,R0 = 0.90, average time and
average number of nodes

Walk-back Penalty

n k T Nodes > Limit T Nodes > Limit

15 3 322.8 6965 1 42.3 4795 0
15 4 571.1 17629 13 432.6 21843 8
17 2 92.7 6465 1 15.4 3813 1
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Application: Reliability

Computational results

Table: Correlation, lower reliabilities
rij ∈ [0.90, 0.99], cij ∈ [10, 20], uij = 4,R0 = 0.90, average time and
average number of nodes

Walk-back Penalty

n k T Nodes > Limit T Nodes > Limit

7 5 23.6 6157 0 17.9 5301 0
8 4 593.5 37728 7 373.4 34754 1
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Comparison with other solvers

Table: Comparison with other solvers in the case n = 8, k = 4 of table 2

WB Penalty Baron Couenne Bonmin

Ex T Cost T Cost T Cost T Cost

04 158.4 119 43.8 119 N/F 165.4 119

15 650.4 123 89.1 124(*) N/F 604.1 123

16 192.2 121 51.1 121 1017.5 121 456.8 121

18 54.3 113 30.2 113 247.8 113 146.3 113

19 15.8 114 13.7 114 68.6 114 88.5 114

30 112.6 124 33.8 125(*) 805.5 124 178.8 124
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Figure: Spent time to reach the optimum: Penalty, Bonmin and Baron
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Walk-back for Non Linear Integer Programming

Applications: assignment of jobs

Assignment of jobs

The treated problem in Tayur, Thomas and Natraj, consists in
assigning jobs to machines, with given production and correlated
setup costs, capacity constraints and probability to reach a given
demand.

This probability constraint is of the following form:

Prob(T̃ x ≤ C ) ≥ γ

where T̃ is the technology matrix, and represents a joint
probabilistic constraint, where it is important to have all
constraints satisfied simultaneously and there may be dependence
between random variables in different rows.
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assigning jobs to machines, with given production and correlated
setup costs, capacity constraints and probability to reach a given
demand.
This probability constraint is of the following form:

Prob(T̃ x ≤ C ) ≥ γ
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Applications: assignment of jobs

Model

n number of job types, indexed by i ,

m number of machines, indexed by j ,

(D1, . . . ,Dn) random vector of demands,

Cj capacity (time) for each machine,

(D̂1, . . . , D̂n) means vector of the probability distribution of
demand,

Sij setup time for job type i on machine j ,

Kij setup cost for job type i on machine j ,
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Model

Mi lot splitting,

L′ij the cost of producing a unit of product type i on machine
j ,

Lij = (D̂i/Mi )L
′
ij ,

pij processing time for a unit of job type i on machine j ,

γ probability of no shortfall.

zij equals 1 if job type i is scheduled on machine j , 0
otherwise,

yij multiples of 1/Mi of demand of product i s scheduled on
machine j .
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Model

(SP) min
∑
i

∑
j

(Kijzij + Lijyij)

s.t.
m∑
j=1

yij = Mi , i = 1, 2, . . . , n, (1)

Mizij ≥ yij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m, (2)
n∑

i=1

pij

(
D̂i/Mi

)
yij +

n∑
i=1

Sijzij ≤ Cj , j = 1, 2, . . . ,m, (3)

Prob

{
n∑

i=1

pij (Di/Mi ) yij +
n∑

i=1

Sijzij ≤ Cj , j = 1, 2, . . . ,m

}
≥ γ,

(4)

zij ∈ {0, 1}, yij ∈ {0, 1, . . . ,Mi} (5)
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Relaxed problem

(LSP) min
∑
i

∑
j

(Kijzij + Lijyij)

s.t.
m∑
j=1

yij = Mi , i = 1, 2, . . . , n, (6)

Mizij ≥ yij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m, (7)

zij ∈ {0, 1}, yij ∈ {0, 1, . . . ,Mi}. (8)
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Penalized cost function

If x is the set of variables yij , zij , we consider:

G0(x) = γ − g0(x),

g0(x) = Prob

{
n∑

i=1

pij (Di/Mi ) yij +
n∑

i=1

Sijzij ≤ Cj , j = 1, 2, . . . ,m

}
,

Gj(x) = gj(x)− Cj ,

gj(x) =
n∑

i=1

pij

(
D̂i/Mi

)
yij +

n∑
i=1

Sijzij , j = 1, 2, . . . ,m.
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Penalized cost function

The first penalized function is: T0(x) = c(x) + µP(x)

where

P(x) =
m∑
j=0

max(Gj(x), 0).

in order to calculate µ, we consider

p optimum of the relaxed problem (LSP),

ρ = G0(p), c0 = c(p)

c1 =
∑

i

∑
j(Kij + MiLij)

µ0 =
c1 − c0

ρ
, α = blog(

c0

µ0
)c, and µ = αµ0.
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Penalized cost function

The second penalized function is:

T1(x) = c(x)(2− D(x))

where D(x) =
(∏m

j=0 dj(x)
)1/(m+1)

and

d0(x) =

{
1 if g0(x) ≥ γ,
g0(x)
γ if g0(x) < γ.

dj(x) =

{
1 if gj(x) ≤ Cj ,
Cj

gj (x) if gj(x) ≥ Cj .
j = 1, 2, . . . ,m,
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Computational results

Table: 4 machines, 7 jobs, M = 2, original model

Walk-back Penalty T0

Total Optimum Total Optimum

γ T Nodes T Nodes T Nodes T Nodes

0.888 148.7 13708 91.2 12409 54.3 8861 0.8 596
0.900 149.3 13709 92.1 12410 54.8 8865 0.8 600
0.932 237.3 18560 29.2 7132 196.3 18498 1.1 777
0.956 Max NNP Max 6194.5 83857
0.960 Max NNP Max 14397.0 116797
0.980 Max NNP Max NNP
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Computational results

Table: 4 machines, 7 jobs, M = 2, original model

Walk-back Penalty T1

Total Optimum Total Optimum

γ T Nodes T Nodes T Nodes T Nodes

0.888 148.7 13708 91.2 12409 54.1 8972 1.1 733
0.900 149.3 13709 92.1 12410 53.9 8931 1.1 737
0.932 237.3 18560 29.2 7132 192.8 18516 1.3 898
0.956 Max NNP Max 239.7 18184
0.960 Max NNP Max 5614.5 78284
0.980 Max NNP Max NNP
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Improving the model

The model for the original problemadmits an additional valid
inequality

zij ≤ yij , i = 1, . . . , n, j = 1, . . . ,m. (9)

This constraint reduces the size of the feasible region
The computation of the Gröbner basis of the linear problem
remains very quickly (less than 1s)
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Computational results

Table: 4 machines, 7 jobs, M = 2, improved model

Walk-back Penalty T0

Total Optimum Total Optimum

γ T Nodes T Nodes T Nodes T Nodes

0.888 3.4 934 1.3 873 2.8 643 0.2 100
0.900 3.4 934 1.3 873 2.7 643 0.2 100
0.932 5.4 1299 1.4 893 4.1 913 0.1 63
0.956 176.9 15220 130.2 14670 64.8 8511 2.1 1145
0.960 534.9 28575 429.3 27799 263.7 19072 62.5 7973
0.980 Max NNP 6355.7 98294 11.7 3360
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Computational results

Table: 4 machines, 7 jobs, M = 2, improved model

Walk-back Penalty T1

Total Optimum Total Optimum

γ T Nodes T Nodes T Nodes T Nodes

0.888 3.4 934 1.3 873 2.7 641 0.1 97
0.900 3.4 934 1.3 873 2.7 641 0.2 97
0.932 5.4 1299 1.4 893 4.1 913 0.1 63
0.956 176.9 15220 130.2 14670 60.9 8064 1.2 727
0.960 534.9 28575 429.3 27799 194.1 16172 22.4 4497
0.980 Max NNP 6316.1 98920 87.5 9905
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Comparison with other solvers

Other solvers

The solver Couenne returns the message “System error” and
stops the execution without any point returned.

Baron returns a point that is not feasible for the chance
constraint, and it does not give any message about that.

Bonmin does not handle problems with a non convex feasible
region, but it may return a feasible point. In this case, the
process stops with a point that does not verify the chance
constraint.
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Graver bases

Integral bases

Integral generating set

Let F ⊂ Zn. A set H ⊂ F is an integral generating set of F if
for every x ∈ F there exist {h1, . . . ,hk} ⊂ H and multipliers
λ1, . . . , λk ∈ Z+ such that

x =
k∑

i=1

λihi

An integral generating set H of F is called an integral basis if it is
minimal with respect to inclusion.
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Graver bases

Let C = {x ∈ R2 | x1 = λ1 + 3λ2, x2 = 3λ1 + λ2, λ1, λ2 ≥ 0} C is
the generated cone by the vectors (1, 3)′, (3, 1)′

H = {(1, 3)′, (1, 2)′, (1, 1)′, (2, 1)′, (3, 1)′}

is an integral basis of F = C ∩ Z2
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Graver bases

Theorem

The set of all integer points in a rational polyhedral cone has a
finite integral generating set, called Hilbert basis

Theorem

If a rational polyhedral cone C is pointed, then F = C ∩ Zn has a
unique integral basis
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Graver bases

Graver basis

Fixed A an m × n matrix with integer entries.

We note Oj = jth orthant of Rn.
Hj =(unique) minimal Hilbert basis of kerRn(A) ∩Oj

Gr(A) =
⋃

Hj\{0}

is called the Graver basis of A.
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Graver bases

Definition

We call u, v ∈ Rn sign-compatible or conformal if ujvj ≥ 0 for all
components j = 1, . . . , n.

Examples

The vectors (4,−2, 0) and (2,−3, 5) are conformal. And (2,−3, 5)
and (−1,−4, 5) are not

v
For u, v ∈ Rn we say u v v if u and v are conformal and if
|uj | ≤ |vj | for all j = 1, . . . n; that is, if u belongs to the same
orthant as v and if its components are not greater in absolute
value than the corresponding components of v.

Examples

(4,−2, 0) 6v (2,−3, 5), neither (2,−3, 5) 6v (4,−2, 0).
(4,−2, 0) v (7,−3, 5)
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Graver bases

Primitive binomials

A binomial xu
+ − xu

−
in IA is called primitive if there exists no

other binomial xv
+ − xv

−
in IA such that xv

+
divides xu

+
and xv

−

divides xu
−

. A primitive element is v minimal element in IA

Gordan-Dickson lemma

Every infinite set S ⊂ Zn
+ contains only finitely many ≤-minimal

points
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Graver bases

Gordan-Dickson lemma, v version

Every sequence {p1,p2, . . .} of points in Zn such that pi 6v pj
whenever i < j is finite
Every infinite set S ⊂ Zn contains only finitely many v-minimal
points

v-minimal elements

For any given matrix A ∈ Zm×n the set of minimal v elements in
kerZn(A)\{0} is finite

Lemma

Gr(A) is the set of minimal v elements in kerZn(A)\{0}
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Graver bases

Positive sum property

Gr(A) has the positive sum property with respect to kerZn(A),
that is, every z ∈ kerZn(A) possesses a v-representation with
respect to Gr(A):

z =
∑

αigi αi ∈ Z+, gi ∈ Gr(A), gi v z

Gr(A) and PSP

Gr(A) is the unique inclusion-minimal subset of kerZn(A) that has
the positive sum property with respect to kerZn(A)
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Graver bases

Circuits and Graver basis

Circuits

A vector in kerZn(A) is called a circuit of A if its support is
inclusion minimal among all elements in kerZn(A) and its
components are integer and relatively prime.
Equivalently, a circuit is an irreducible binomial xu

+ − xu
−

in IA
which has minimal support

Lemma

If u is a circuit of A then supp(u) has at most m + 1 elements.

CA ⊂ Gr(A)

Every circuit is primitive.
So, the set of circuits forms a subset of the Graver basis of A.
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Graver bases

Universal Gröbner basis and Graver basis

Universal Gröbner basis

The universal Gröbner basis is the union of all reduced Gröbner
bases and a Gröbner basis with respect to any monomial order.
The universal Gröbner basis is finite

Lemma

Every binomial xu
+ − xu

−
in the universal Gröbner basis UA is an

element of the Graver basis

CA ⊂ UA ⊂ Gr(A)
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Graver bases

Let A = (i j k) ∈ N1×3 pairwise relatively prime, then
CA = {x j1 − x i2, x

k
1 − x i3, x

k
2 − x j3}. We can consider the following

three cases:

If A = (1 2 3) then UA = Gr(A) = CA ∪ {x3 − x1x2, x1x3 − x2
2}

If A = (1 2 4) then CA = UA = {x2
1 − x2, x

4
1 − x3, x2 − x2

3} and
Gr(A)\UA = {x3 − x2

1 − x2}
If A = (1 2 5) then UA\CA = {x3 − x1x

2
2 , x1x3 − x3

2} and
Gr(A)\UA = {x3 − x3

1x2}

Theorem

If A is a totally unimodular matrix

CA = UA = Gr(A)
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Computation of Graver basis

Lawrence lifting

Consider the enlarged matrix

Λ(A) =

(
A 0
In In

)
Where In is the identity matrix and 0 is the m × n zero matrix.
This (m + n)× 2n-matrix is called the Lawrence lifting of A

Toric ideal

IΛ(A) = {xu+
yu

− − xu
−
yu

+
: u ∈ ker(A)}
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Computation of Graver basis

Theorem

For a Lawrence type matrix Λ(A) the following sets of binomials
coincide:

The Graver basis of Λ(A)

The universal Gröbner basis of Λ(A)

Any reduced Gröbner basis of IΛ(A)

Any minimal generating set of IΛ(A) (up to scalar multiples)
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Computation of Graver basis

Computing Graver basis;
Data: A ∈ Zm×n

Result: Gr(A)
Choose any term order > on k[x, y];
Compute the reduced Gröbner basis G of IΛ(A) with respect to >;
Substitute yi 7→ 1 for any g ∈ G ;
return G ;
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Computation of Graver basis

Pottier’s algorithm

This algorithm computes the set of v-minimal elements in a lattice
L\{0}. We choose L = kerZn(A).

Infinite test Criterion for PSP

A symmetric set G ⊂ L has the Positive Sum Property with
respect to L if and only if every z ∈ L is v-representable with
respect to G

Finite test Criterion for PSP

A symmetric set G ⊂ L has the Positive Sum Property with
respect to L if and only if G generates L over Z and if every sum
u + v, u, v ∈ G , is v-representable with respect to G
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Computation of Graver basis

Normal form algorithm

Normal form

We give the algorithm to compute Normal Form r of an element s
in the lattice L with respect to G ⊂ L, such that s =

∑
αigi + r

with αi ∈ Z+, gi , r v s and gi ∈ G and g 6v r for all g ∈ G

Normal form algorithm;
Data: s ∈ L, set G ⊂ L
Result: vector r =NormalForm(s,G );
r = s;
while ∃g ∈ G with g v r do

r = r− g;
end
return r;
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Computation of Graver basis

Completion procedure

Pottier’s algorithm;
Data: a generating set F of L ⊂ Zn

Result: a set G ⊂ L containing all the v-minimal elements in
L\{0};

G = F ∪ (−F );
C = ∪f,g∈G{f + g};
while C 6= ∅ do

s =an element in C ;
C = C\{s};
r =NormalForm(s,G );
if r 6= 0 then

C = C ∪ {r + g : g ∈ G};
G = G ∪ {r};

end

end
return G ;
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Computation of Graver basis

Drawbacks of Pottier’s algorithm

The set G might contain many elements of L that are not
v-minimal.

The computation of the normal form of s with respect to G is
very costly
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Computation of Graver basis

Project-and-lift approach

Best algorithm

Apply Pottier’s algorithm to achieve Graver basis property on
a subset of all variables. All vectors in ker(A) (in particular:
all Graver bases elements) can be generated by increasing
norm on these variables(Project phase).

Apply Pottier’s algorithm again, but to all variables.

Fewer sums f + g have to be considered. (f and g should
have the same sign pattern on the chosen variables.)
Only those sums f + g have to be considered that fulfill upper
bound conditions on the chosen variables.
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Computation of Graver basis

sage: from sage.interfaces.four_ti_2 import four_ti_2

sage: four_ti_2.write_matrix([[1,1,1,1],[1,5,10,25]],

"4coins.mat")

sage: four_ti_2.call("graver", "4coins", False)

sage: four_ti_2.read_matrix("4coins.gra")

[ 5 -6 0 1]

[ 5 -9 4 0]

[ 0 3 -4 1]

[ 5 -3 -4 2]

[ 5 0 -8 3]
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Optimality certificate for separable convex integer programs

Let A ∈ Zm×n, b ∈ Zm l, u ∈ Zn and an objective function
f : Rn → R be given.

IPA,b,l,u,f : min{f (z) : Az = b, l ≤ z ≤ u, z ∈ Zn}

As we developed in the linear case, we give a test set for this
problem in certain conditions.

Test set for IPA,b,l,u,f

T ⊂ Zn is a test set for IPA,b,l,u,f if, for every nonoptimal feasible
solution z0 of IPA,b,l,u,f there exists a vector t ∈ T and some
positive integer α such that

z0 + αt is feasible and

f (z0 + αt) < f (z0)
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Optimality certificate for separable convex integer programs

Lemma

Let f (z) =
∑n

j=1 fj(zj) be separable convex, let z ∈ Rn, and
g1, . . . gr ∈ Rn be vectors with the same sign pattern; that is, they
belong to a common orthant of Rn. Then we have

f

(
z +

r∑
i=1

αigi

)
− f (z) ≥

r∑
i=1

αi (f (z + gi )− f (z))

for arbitrary integers α1, . . . , αr ∈ Z+

Lemma

The set Gr(A) is an optimality certificate for IPA,b,l,u,f for any
vectors b ∈ Zm l, u ∈ Zn and for any separable convex function f
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Optimality certificate for separable convex integer programs

Graver-best augmentation algorithm

Graver-best augmentation algorithm;
Data: A ∈ Zm×n, b ∈ Zm l, u ∈ Zn, f : Rn → R, a finite test set

T for IPA,b,l,u,f , a feasible solution z0 to IPA,b,l,u,f

Result: a optimal solution zmin of IPA,b,l,u,f ;
while There are t ∈ T , α ∈ Z+ with z0 + αt feasible and
f (z0 + αt) < f (z0) do

Among all such pairs t ∈ T , α ∈ Z+ choose one with
f (z0 + αt) minimal;
z0 = z0 + αt;

end
return z0;
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