Huff location models on networks

Sanja Roksandić
tutors: Professor Emilio Carrizosa
Professor Nenad Mladenović

Mathematical Institute of the Serbian Academy of Sciences and Arts
Belgrade, Serbia

Faculty of Mathematics, University of Seville
Seville, Spain
Outline

1. Introduction
 - Definition of a location problem
 - A couple of famous examples of location problems on networks
 - Location problems in a competitive environment

2. Problem definition
 - Huff location model with continuous demand
 - Huff location model with discrete demand

3. Algorithms and results
 - VNS metaheuristic
 - Computational results

4. Conclusions and future research lines
Outline

1. Introduction
 - Definition of a location problem
 - A couple of famous examples of location problems on networks
 - Location problems in a competitive environment

2. Problem definition
 - Huff location model with continuous demand
 - Huff location model with discrete demand

3. Algorithms and results
 - VNS metaheuristic
 - Computational results

4. Conclusions and future research lines
Definition of a location problem

- spatial resource allocation problem
- concepts of **facilities** serving **demand**
- spatial topology

- spatially dependent objective
- typical criteria:
 - minimizing average travel time or distance
 - minimizing average response time
 - minimizing a cost function of travel or response time
 - minimizing max travel time
 - maximizing min travel time
Definition of a location problem

A couple of famous examples of location problems on networks

Outline

1. Introduction
 - Definition of a location problem
 - A couple of famous examples of location problems on networks
 - Location problems in a competitive environment

2. Problem definition
 - Huff location model with continuous demand
 - Huff location model with discrete demand

3. Algorithms and results
 - VNS metaheuristic
 - Computational results

4. Conclusions and future research lines
A couple of famous examples of location problems on networks

Terminology and notation

- planar network \(\mathcal{N} = (V, E) \)
- no multiedges, no loops, rectifiable edges
- for notational simplicity, identification \(\mathcal{N} \) with the set of points contained in any edge \(e \in E \)
- the definition of the **distance** between any two points \(x, y \in \mathcal{N} \) as the length of any shortest path in \(\mathcal{N} \) joining \(x \) and \(y \)
A couple of famous examples of location problems on networks

Terminology and notation

- planar network $\mathcal{N} = (V, E)$
- no multiedges, no loops, rectifiable edges
- for notational simplicity, identification \mathcal{N} with the set of points contained in any edge $e \in E$
- the definition of the distance between any two points $x, y \in \mathcal{N}$ as the length of any shortest path in \mathcal{N} joining x and y
A couple of famous examples of location problems on networks

The p–center problem

Definition

Let f be the function defined for $X \subset V$ by

$$f(X) = \max \{ f_i(d(v_i, X)) : i \in I \},$$

for any given nondecreasing functions $f_i, i \in I$.

The p–center problem is to find an absolute p–center $X^* = \{x_1^*, \ldots, x_p^*\}$ and the p–radius r_p such that

$$r_p \equiv f(X^*) = \min \{ f(X) : |X| = p, X \subset V \}.$$

- interpretation of $f_i(d(X, v_i))$
 - loss incurred while travelling from the closest center to v_i
 - time to travel from v_i to the nearest service center
- vertex restricted and continuous case - the difference
- usual form of the function $f_i(d(v_i, X))$: $w_i d(v_i, X) + a_i$
The p–center problem

Definition

Let f be the function defined for $X \subset V$ by
$$f(X) = \max\{f_i(d(v_i, X)) : i \in I\},$$
for any given nondecreasing functions f_i, $i \in I$.

The p–center problem is to find an absolute p–center $X^* = \{x_1^*, \ldots, x_p^*\}$ and the p–radius r_p such that
$$r_p \equiv f(X^*) = \min\{f(X) : |X| = p, X \subset V\}.$$

- interpretation of $f_i(d(X, v_i))$
 - loss incurred while travelling from the closest center to v_i
 - time to travel from v_i to the nearest service center
- **vertex restricted** and **continuous** case - the difference
- usual form of the function $f_i(d(v_i, X))$: $w_i d(v_i, X) + a_i$
A couple of famous examples of location problems on networks

The p–center problem

Definition

Let f be the function defined for $X \subset V$ by

$$f(X) = \max\{f_i(d(v_i, X)) : i \in I\},$$

for any given nondecreasing functions f_i, $i \in I$.

The p–center problem is to find an absolute p–center $X^* = \{x_1^*, \ldots, x_p^*\}$ and the p–radius r_p such that

$$r_p \equiv f(X^*) = \min\{f(X) : |X| = p, X \subset V\}.$$

- **interpretation of $f_i(d(X, v_i))$**
 - loss incurred while travelling from the closest center to v_i
 - time to travel from v_i to the nearest service center

- **vertex restricted** and **continuous** case - the difference

- usual form of the function $f_i(d(v_i, X))$: $w_i d(v_i, X) + a_i$
The p–median problem

Definition

Let $g(X) = \sum_{i \in I} w_i d(v_i, X)$ for $X \subset \mathcal{N}$.

The p–median problem is to find a set X^* of p points for which $g(X^*) = \min\{g(X) : |X| = p, X \subset \mathcal{N}\}$.

- **Absolute** p–median of \mathcal{N}: any set X^* of p points minimizing g. Hakimi (1964, 1965): there exists an absolute p–median consisting entirely of vertices → the distinction between the vertex restricted and unrestricted versions is insignificant.

- Real life p–median problems:
 - locating plants/warehouses to serve other plants/warehouses or market areas
 - example of public sector location model
The p–median problem

Definition

Let $g(X) = \sum_{i \in I} w_i d(v_i, X)$ for $X \subset \mathcal{N}$.

The p–median problem is to find a set X^* of p points for which $g(X^*) = \min \{g(X) : |X| = p, X \subset \mathcal{N}\}$.

- **absolute p–median** of \mathcal{N}: any set X^* of p points minimizing g. Hakimi (1964, 1965): there exists an absolute p–median consisting entirely of vertices → the distinction between the vertex restricted and unrestricted versions is insignificant

- **real life p–median problems**:
 - locating plants/warehouses to serve other plants/warehouses or market areas
 - example of public sector location model
A couple of famous examples of location problems on networks

The p–median problem

Definition

Let $g(X) = \sum_{i \in I} w_i d(v_i, X)$ for $X \subset \mathcal{N}$.

The p–median problem is to find a set X^* of p points for which $g(X^*) = \min\{g(X) : |X| = p, X \subset \mathcal{N}\}$.

- **absolute p–median** of \mathcal{N}: any set X^* of p points minimizing g. Hakimi (1964, 1965): there exists an absolute p–median consisting entirely of vertices \rightarrow the distinction between the vertex restricted and unrestricted versions is insignificant

- real life p–median problems:
 - locating plants/warehouses to serve other plants/warehouses or market areas
 - example of public sector location model
Introduction

Definition of a location problem
A couple of famous examples of location problems on networks
Location problems in a competitive environment

Problem definition
Huff location model with continuous demand
Huff location model with discrete demand

Algorithms and results
VNS metaheuristic
Computational results

Conclusions and future research lines
Location problems in a competitive environment

- Hakimi (1983): customers deterministically choose the facility (the nearest one)
- Huff (1963): customers divide their patronage probabilistically
- Gravity-based formula: the probability that a consumer patronizes a shopping center is proportional to the attractiveness of the center and inversely proportional to a power of the distance to it
- Both demand and facilities locations can be at nodes and also edges
Hakimi (1983): customers **deterministically** choose the facility (the nearest one)

Huff (1963): customers divide their patronage **probabilistically**

Gravity-based formula: the probability that a consumer patronizes a shopping center is **proportional to the attractiveness of the center and inversely proportional to a power of the distance** to it

Both demand and facilities locations can be at nodes and also edges
Location problems in a competitive environment

- Hakimi (1983): customers deterministically choose the facility (the nearest one)
- Huff (1963): customers divide their patronage probabilistically
- Gravity-based formula: the probability that a consumer patronizes a shopping center is proportional to the attractiveness of the center and inversely proportional to a power of the distance to it
- Both demand and facilities locations can be at nodes and also edges
Outline

1. Introduction
 - Definition of a location problem
 - A couple of famous examples of location problems on networks
 - Location problems in a competitive environment

2. Problem definition
 - Huff location model with continuous demand
 - Huff location model with discrete demand

3. Algorithms and results
 - VNS metaheuristic
 - Computational results

4. Conclusions and future research lines
Huff location model with continuous demand

- \(m \) facilities already located at points \(y_1, \ldots, y_m \) on the network
- customers located all over the network \(\mathcal{N} \), thus with \(x \) on \(\mathcal{N} \) is associated the demand density \(w(x) \) with the properties:
 - \(w_e(x) \geq 0 \), on each edge \(e \in E \), and
 - \(\sum_{e \in E} \int_e w_e(x) \, dx = 1 \)

- The goal is to locate new \(p \) facilities which will respond to the customers’ demands in such a way that the captured demand is maximal.
Huff location model with continuous demand

- m facilities already located at points y_1, \ldots, y_m on the network
- customers located all over the network \mathcal{N}, thus with x on \mathcal{N} is associated the demand density $w(x)$ with the properties:
 - $w_e(x) \geq 0$, on each edge $e \in E$, and
 - $\sum_{e \in E} \int_e w_e(x) \, dx = 1$
- The goal is to locate new p facilities which will respond to the customers’ demands in such a way that the captured demand is maximal.
Huff location model with continuous demand

- m facilities already located at points y_1, \ldots, y_m on the network
- customers located all over the network \mathcal{N}, thus with x on \mathcal{N} is associated the demand density $w(x)$ with the properties:
 - $w_e(x) \geq 0$, on each edge $e \in E$, and
 - $\sum_{e \in E} \int_{e} w_e(x) \, dx = 1$
- The goal is to locate new p facilities which will respond to the customers’ demands in such a way that the captured demand is maximal.
Huff location model with continuous demand

- m facilities already located at points y_1, \ldots, y_m on the network
- Customers located all over the network \mathcal{N}, thus with x on \mathcal{N} is associated the demand density $w(x)$ with the properties:
 - $w_e(x) \geq 0$, on each edge $e \in E$, and
 - $\sum_{e \in E} \int_e w_e(x) dx = 1$

- The goal is to locate new p facilities which will respond to the customers’ demands in such a way that the captured demand is maximal.
Huff location model with continuous demand

- m facilities already located at points y_1, \ldots, y_m on the network
- customers located all over the network \mathcal{N}, thus with x on \mathcal{N} is associated the demand density $w(x)$ with the properties:
 - $w_e(x) \geq 0$, on each edge $e \in E$, and
 - $\sum_{e \in E} \int_e w_e(x) dx = 1$
- The goal is to locate new p facilities which will respond to the customers’ demands in such a way that the captured demand is maximal.
Huff location model with continuous demand

- \(a_{s_i} \): attractiveness of store at \(s_i \)
- \(d(x, s_i) \): distance from the customers located at the arbitrary point \(x \) to the store at \(s_i \) on \(N \)
- \(F(d(x, s_i)) \): distance deterrence function of the customers \(x \) from the store at \(s_i \) (monotonically decreasing function with respect to \(d(x, s_i) \))
 - by Huff’s original model
 \[
 F(d(x, s_i)) = d(x, s_i)^{-\lambda}, \quad \lambda > 0
 \]
- \(P(x, s_i) \): probability of consumer at \(x \) choosing store at \(s_i \) among the \(m + p \) stores
- the network Huff model is
 \[
 P(x, s_i) = \frac{a_{s_i} d(x, s_i)^{-\lambda}}{\sum_{s_j} a_{s_j} d(x, s_j)^{-\lambda}}
 \]
Huff location model with continuous demand

- a_{s_i}: attractiveness of store at s_i
- $d(x, s_i)$: distance from the customers located at the arbitrary point x to the store at s_i on \mathcal{N}
- $F(d(x, s_i))$: distance deterrence function of the customers x from the store at s_i (monotonically decreasing function with respect to $d(x, s_i)$)
 - by Huff’s original model
 \[F(d(x, s_i)) = d(x, s_i)^{-\lambda}, \quad \lambda > 0 \]

- $P(x, s_i)$: probability of consumer at x choosing store at s_i among the $m + p$ stores
 - the network Huff model is
 \[P(x, s_i) = \frac{a_{s_i} d(x, s_i)^{-\lambda}}{\sum_{s_j} a_{s_j} d(x, s_j)^{-\lambda}} \]
Huff location model with continuous demand

- a_{s_i}: attractiveness of store at s_i
- $d(x, s_i)$: distance from the customers located at the arbitrary point x to the store at s_i on \mathcal{N}
- $F(d(x, s_i))$: distance deterrence function of the customers x from the store at s_i (monotonically decreasing function with respect to $d(x, s_i)$)
 - by Huff’s original model
 $$F(d(x, s_i)) = d(x, s_i)^{-\lambda}, \quad \lambda > 0$$

- $P(x, s_i)$: probability of consumer at x choosing store at s_i among the $m + p$ stores
- the network Huff model is
 $$P(x, s_i) = \frac{a_{s_i} d(x, s_i)^{-\lambda}}{\sum_{s_j} a_{s_j} d(x, s_j)^{-\lambda}}$$
Huff location model with continuous demand

- \(a_{si} \): attractiveness of store at \(s_i \)
- \(d(x, s_i) \): distance from the customers located at the arbitrary point \(x \) to the store at \(s_i \) on \(N \)
- \(F(d(x, s_i)) \): distance deterrence function of the customers \(x \) from the store at \(s_i \) (monotonically decreasing function with respect to \(d(x, s_i) \))
 - by Huff’s original model
 \[
 F(d(x, s_i)) = d(x, s_i)^{-\lambda}, \quad \lambda > 0
 \]

- \(P(x, s_i) \): probability of consumer at \(x \) choosing store at \(s_i \) among the \(m + p \) stores

 the network Huff model is
 \[
 P(x, s_i) = \frac{a_{si}d(x,s_i)^{-\lambda}}{\sum_{s_j} a_{sj}d(x,s_j)^{-\lambda}}
 \]
Huff location model with continuous demand

- a_{s_i}: attractiveness of store at s_i
- $d(x, s_i)$: distance from the customers located at the arbitrary point x to the store at s_i on \mathcal{N}
- $F(d(x, s_i))$: distance deterrence function of the customers x from the store at s_i (monotonically decreasing function with respect to $d(x, s_i)$)
 - by Huff’s original model
 \[F(d(x, s_i)) = d(x, s_i)^{-\lambda}, \quad \lambda > 0 \]

- $P(x, s_i)$: probability of consumer at x choosing store at s_i among the $m + p$ stores
- the network Huff model is
 \[P(x, s_i) = \frac{a_{s_i} d(x, s_i)^{-\lambda}}{\sum_{s_j} a_{s_j} d(x, s_j)^{-\lambda}} \]
Huff location model with continuous demand

- the network Huff model is
 \[P(x, s_i) = \frac{a_{s_i}d(x,s_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(x,s_j)^{-\lambda}} \]

- the demand density at \(x \) choosing facility at \(s_i \)
 \[D(x, s_i) = \frac{a_{s_i}d(x,s_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(x,s_j)^{-\lambda}} w(x) \]

- the demand \(D(s_i) \) captured by facility at \(s_i \)
 \[D(s_i) = \sum_{e \in E} \int_e \frac{a_{s_i}d(x,s_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(x,s_j)^{-\lambda}} w(x) \, dx \]

- the total demand captured only by new facilities at \(z_i \)
 \[\sum_{i=1}^p D(z_i) = \sum_{i=1}^p \sum_{e \in E} \int_e \frac{a_{z_i}d(x,z_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(x,s_j)^{-\lambda}} w(x) \, dx \]

and it has to be maximized, i.e. our problem is

\[\max_{z_1, \ldots, z_p \in \mathcal{N}} \sum_{i=1}^p \sum_{e \in E} \int_e \frac{a_{z_i}d(x,z_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(x,s_j)^{-\lambda}} w(x) \, dx \]
Introduction

Problem definition

Algorithms and results

Conclusions and future research lines

Huff location model with continuous demand

- The network Huff model is
 \[P(x, s_i) = \frac{a_{s_i}d(x,s_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(x,s_j)^{-\lambda}} \]

- The demand density at \(x \) choosing facility at \(s_i \)
 \[D(x, s_i) = \frac{a_{s_i}d(x,s_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(x,s_j)^{-\lambda}} w(x) \]

- The demand \(D(s_i) \) captured by facility at \(s_i \)
 \[D(s_i) = \sum_{e \in E} \int_{e} \frac{a_{s_i}d(x,s_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(x,s_j)^{-\lambda}} w(x) dx \]

- The total demand captured only by new facilities at \(z_i \)
 \[\sum_{i=1}^{p} D(z_i) = \sum_{i=1}^{p} \sum_{e \in E} \int_{e} \frac{a_{z_i}d(x,z_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(x,s_j)^{-\lambda}} w(x) dx \]

and it has to be maximized, i.e. our problem is

\[\max_{z_1, \ldots, z_p \in \mathcal{N}} \sum_{i=1}^{p} \sum_{e \in E} \int_{e} \frac{a_{z_i}d(x,z_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(x,s_j)^{-\lambda}} w(x) dx \]
Huff location model with continuous demand

- The network Huff model is
 $$P(x, s_i) = \frac{a_{s_i}d(x, s_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(x, s_j)^{-\lambda}}$$

- The demand density at x choosing facility at s_i
 $$D(x, s_i) = \frac{a_{s_i}d(x, s_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(x, s_j)^{-\lambda}} w(x)$$

- The demand $D(s_i)$ captured by facility at s_i
 $$D(s_i) = \sum_{e \in E} \int_{e} \frac{a_{s_i}d(x, s_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(x, s_j)^{-\lambda}} w(x) dx$$

- The total demand captured only by new facilities at z_i
 $$\sum_{i=1}^{p} D(z_i) = \sum_{i=1}^{p} \sum_{e \in E} \int_{e} \frac{a_{z_i}d(x, z_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(x, s_j)^{-\lambda}} w(x) dx$$

and it has to be maximized, i.e. our problem is
$$\max_{z_1, \ldots, z_p \in \mathcal{N}} \sum_{i=1}^{p} \sum_{e \in E} \int_{e} \frac{a_{z_i}d(x, z_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(x, s_j)^{-\lambda}} w(x) dx$$
Huff location model with continuous demand

- the network Huff model is
 \[P(x, s_i) = \frac{a_{s_i}d(x,s_i)^{-\lambda}}{\sum_j a_{s_j}d(x,s_j)^{-\lambda}} \]

- the demand density at \(x \) choosing facility at \(s_i \)
 \[D(x, s_i) = \frac{a_{s_i}d(x,s_i)^{-\lambda}}{\sum_j a_{s_j}d(x,s_j)^{-\lambda}} w(x) \]

- the demand \(D(s_i) \) captured by facility at \(s_i \)
 \[D(s_i) = \sum_{e \in E} \int_e \frac{a_{s_i}d(x,s_i)^{-\lambda}}{\sum_j a_{s_j}d(x,s_j)^{-\lambda}} w(x) dx \]

- the total demand captured only by new facilities at \(z_i \)
 \[\sum_{i=1}^p D(z_i) = \sum_{i=1}^p \sum_{e \in E} \int_e \frac{a_{z_i}d(x,z_i)^{-\lambda}}{\sum_j a_{s_j}d(x,s_j)^{-\lambda}} w(x) dx \]

and it has to be maximized, i.e. our problem is

\[\max_{z_1,\ldots,z_p \in \mathcal{N}} \sum_{i=1}^p \sum_{e \in E} \int_e \frac{a_{z_i}d(x,z_i)^{-\lambda}}{\sum_j a_{s_j}d(x,s_j)^{-\lambda}} w(x) dx \]
Huff location model with continuous demand

- The network Huff model is
 \[P(x, s_i) = \frac{a_{s_i} d(x, s_i)^{-\lambda}}{\sum_j a_{s_j} d(x, s_j)^{-\lambda}} \]

- The demand density at \(x \) choosing facility at \(s_i \)
 \[D(x, s_i) = \frac{a_{s_i} d(x, s_i)^{-\lambda}}{\sum_j a_{s_j} d(x, s_j)^{-\lambda}} w(x) \]

- The demand \(D(s_i) \) captured by facility at \(s_i \)
 \[D(s_i) = \sum_{e \in E} \int_e \frac{a_{s_i} d(x, s_i)^{-\lambda}}{\sum_j a_{s_j} d(x, s_j)^{-\lambda}} w(x) dx \]

- The total demand captured only by new facilities at \(z_i \)
 \[\sum_{i=1}^{p} D(z_i) = \sum_{i=1}^{p} \sum_{e \in E} \int_e \frac{a_{z_i} d(x, z_i)^{-\lambda}}{\sum_j a_{s_j} d(x, s_j)^{-\lambda}} w(x) dx \]

And it has to be maximized, i.e., our problem is

\[\max_{z_1, \ldots, z_p \in \mathcal{N}} \sum_{i=1}^{p} \sum_{e \in E} \int_e \frac{a_{z_i} d(x, z_i)^{-\lambda}}{\sum_j a_{s_j} d(x, s_j)^{-\lambda}} w(x) dx \]
Huff location model with continuous demand

- The network Huff model is
 \[P(x, s_i) = \frac{a_{s_i} d(x, s_i)^{-\lambda}}{\sum_{s_j} a_{s_j} d(x, s_j)^{-\lambda}} \]

- The demand density at \(x \) choosing facility at \(s_i \)
 \[D(x, s_i) = \frac{a_{s_i} d(x, s_i)^{-\lambda}}{\sum_{s_j} a_{s_j} d(x, s_j)^{-\lambda}} w(x) \]

- The demand \(D(s_i) \) captured by facility at \(s_i \)
 \[D(s_i) = \sum_{e \in E} \int_e \frac{a_{s_i} d(x, s_i)^{-\lambda}}{\sum_{s_j} a_{s_j} d(x, s_j)^{-\lambda}} w(x) dx \]

- The total demand captured only by new facilities at \(z_i \)
 \[\sum_{i=1}^{p} D(z_i) = \sum_{i=1}^{p} \sum_{e \in E} \int_e \frac{a_{z_i} d(x, z_i)^{-\lambda}}{\sum_{s_j} a_{s_j} d(x, s_j)^{-\lambda}} w(x) dx \]

and it has to be maximized, i.e. our problem is
\[\max_{z_1, \ldots, z_p \in \mathcal{N}} \sum_{i=1}^{p} \sum_{e \in E} \int_e \frac{a_{z_i} d(x, z_i)^{-\lambda}}{\sum_{s_j} a_{s_j} d(x, s_j)^{-\lambda}} w(x) dx \]
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Problem definition</th>
<th>Algorithms and results</th>
<th>Conclusions and future research lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huff location model with discrete demand</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outline

1. Introduction
 - Definition of a location problem
 - A couple of famous examples of location problems on networks
 - Location problems in a competitive environment

2. Problem definition
 - Huff location model with continuous demand
 - Huff location model with discrete demand

3. Algorithms and results
 - VNS metaheuristic
 - Computational results

4. Conclusions and future research lines
Huff location model with discrete demand

\(p - \text{facility case} \)

- customers are located at the vertices \(v_1, \ldots, v_n, \ n = |V|, \) of the network
- the probability \(P(v_k, s_i) \) of customer at \(v_k \) choosing facility at \(s_i \) among the \(m + p \) facilities
 \[
 P(v_k, s_i) = \frac{a_s d(v_k, s_i)^{-\lambda}}{\sum_j a_s d(v_k, s_j)^{-\lambda}}
 \]
- the demand \(D(v_k, s_i) \) of the customer \(v_k \) that facility at \(s_i \) captures
 \[
 D(v_k, s_i) = \frac{a_s d(v_k, s_i)^{-\lambda}}{\sum_j a_s d(v_k, s_j)^{-\lambda}} w_k
 \]
- the total demand captured by the new facility located at \(z_i \)
 \[
 D(z_i) = \sum_{k=1}^n \frac{a_{z_i} d(v_k, z_i)^{-\lambda}}{\sum_j a_s d(v_k, s_j)^{-\lambda}} w_k
 \]
customers are located at the vertices \(v_1, \ldots, v_n, n = |V| \), of the network

the probability \(P(v_k, s_i) \) of customer at \(v_k \) choosing facility at \(s_i \) among the \(m + p \) facilities

\[
P(v_k, s_i) = \frac{a_{s_i}d(v_k, s_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(v_k, s_j)^{-\lambda}}
\]

the demand \(D(v_k, s_i) \) of the customer \(v_k \) that facility at \(s_i \) captures

\[
D(v_k, s_i) = \frac{a_{s_i}d(v_k, s_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(v_k, s_j)^{-\lambda}} w_k
\]

the total demand captured by the new facility located at \(z_i \)

\[
D(z_i) = \sum_{k=1}^{n} \frac{a_{z_i}d(v_k, z_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(v_k, s_j)^{-\lambda}} w_k
\]
Huff location model with discrete demand

p-facility case

- Customers are located at the vertices v_1, \ldots, v_n, $n = |V|$, of the network.

- The probability $P(v_k, s_i)$ of customer at v_k choosing facility at s_i among the $m + p$ facilities
 \[P(v_k, s_i) = \frac{a_{s_i}d(v_k, s_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(v_k, s_j)^{-\lambda}} \]

- The demand $D(v_k, s_i)$ of the customer v_k that facility at s_i captures
 \[D(v_k, s_i) = \frac{a_{s_i}d(v_k, s_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(v_k, s_j)^{-\lambda}} w_k \]

- The total demand captured by the new facility located at z_i
 \[D(z_i) = \sum_{k=1}^{n} \frac{a_{z_i}d(v_k, z_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(v_k, s_j)^{-\lambda}} w_k \]
Huff location model with discrete demand

p—facility case

- Customers are located at the vertices v_1, \ldots, v_n, $n = |V|$, of the network.
- The probability $P(v_k, s_i)$ of customer at v_k choosing facility at s_i among the $m + p$ facilities
 \[P(v_k, s_i) = \frac{a_{s_i}d(v_k, s_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(v_k, s_j)^{-\lambda}} \]
- The demand $D(v_k, s_i)$ of the customer v_k that facility at s_i captures
 \[D(v_k, s_i) = \frac{a_{s_i}d(v_k, s_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(v_k, s_j)^{-\lambda}} w_k \]
- The total demand captured by the new facility located at z_i
 \[D(z_i) = \sum_{k=1}^{n} \frac{a_{z_i}d(v_k, z_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(v_k, s_j)^{-\lambda}} w_k \]
Huff location model with discrete demand

p−facility case

- The objective function
 \[
 D(z_1, \ldots, z_p) = \sum_{i=1}^{p} \sum_{k=1}^{n} \frac{a_{z_i}d(v_k, z_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(v_k, s_j)^{-\lambda}} W_k
 \]

- Finally, the problem of the competitive Huff location model with discrete demand
 \[
 \max_{z_1, \ldots, z_p \in N} D(z_1, \ldots, z_p) = \sum_{i=1}^{p} \sum_{k=1}^{n} \frac{a_{z_i}d(v_k, z_i)^{-\lambda}}{\sum_{s_j} a_{s_j}d(v_k, s_j)^{-\lambda}} W_k
 \]

- Under the assumption of differentiability of the function \(D \) at point \((z_1, \ldots, z_p) \in N^p\), the optimality condition
 \[
 a_{z_l} \sum_{k=1}^{n} \left(\frac{d(v_k, z_l)^{-\lambda-1}d'(v_k, z_l)}{\left(\sum_{s_j} a_{s_j}d(v_k, s_j)^{-\lambda}\right)^2} \sum_{i=1}^{m} a_{y_i}d(v_k, y_i)^{-\lambda} \right) w_k = 0, \]
 for \(l \in \{1, \ldots, p\} \)
Huff location model with discrete demand

$p-$facility case

- the objective function
 \[D(z_1, \ldots, z_p) = \sum_{i=1}^{p} \sum_{k=1}^{n} \frac{a_{z_i} d(v_k, z_i)^{-\lambda}}{\sum_{s_j} a_{s_j} d(v_k, s_j)^{-\lambda}} W_k \]

- finally, the problem of the competitive Huff location model with discrete demand
 \[\max_{z_1, \ldots, z_p \in \mathcal{N}} D(z_1, \ldots, z_p) = \sum_{i=1}^{p} \sum_{k=1}^{n} \frac{a_{z_i} d(v_k, z_i)^{-\lambda}}{\sum_{s_j} a_{s_j} d(v_k, s_j)^{-\lambda}} W_k \]

- under the assumption of differentiability of the function D at point $(z_1, \ldots, z_p) \in \mathcal{N}^p$, the optimality condition
 \[a_{z_l} \sum_{k=1}^{n} \left(\frac{d(v_k, z_l)^{-\lambda-1} d'(v_k, z_l)}{\left(\sum_{s_j} a_{s_j} d(v_k, s_j)^{-\lambda} \right)^2} \right) \sum_{i=1}^{m} a_{y_i} d(v_k, y_i)^{-\lambda} W_k = 0, \]
 for \(l \in \{1, \ldots, p\} \)
Huff location model with discrete demand

p–facility case

- the objective function
 \[D(z_1, \ldots, z_p) = \sum_{i=1}^{p} \sum_{k=1}^{n} \frac{a_{z_i} d(v_k, z_i)^{-\lambda}}{\sum_{s_j} a_{s_j} d(v_k, s_j)^{-\lambda}} w_k \]
- finally, the problem of the competitive Huff location model with discrete demand
 \[\max_{z_1, \ldots, z_p \in \mathcal{N}} D(z_1, \ldots, z_p) = \sum_{i=1}^{p} \sum_{k=1}^{n} \frac{a_{z_i} d(v_k, z_i)^{-\lambda}}{\sum_{s_j} a_{s_j} d(v_k, s_j)^{-\lambda}} w_k \]
- under the assumption of differentiability of the function D at point $(z_1, \ldots, z_p) \in \mathcal{N}^p$, the optimality condition
 \[a_{z_l} \sum_{k=1}^{n} \left(\frac{d(v_k, z_l)^{-\lambda-1} d'(v_k, z_l)}{\left(\sum_{s_j} a_{s_j} d(v_k, s_j)^{-\lambda} \right)^2} \sum_{i=1}^{m} a_{y_i} d(v_k, y_i)^{-\lambda} \right) w_k = 0, \]
 for $l \in \{1, \ldots, p\}$
Huff location model with discrete demand

1—facility case

- \(p = 1 \), i.e. locating a single new facility \(z_1 \) on a general network
- the objective function of the 1—facility competitive Huff location model with discrete demand
 \[D(z_1) = a_z z_1 \sum_{k=1}^{n} \frac{d(v_k, z_1)^{-\lambda}}{\sum_{s_j} a_{s_j} d(v_k, s_j)^{-\lambda}} w_k \]
- under the assumption of differentiability of the function \(D \) at point \(z_1 \), the optimality condition
 \[a_z z_1 \sum_{k=1}^{n} \frac{B_k d(v_k, z_1)^{-\lambda-1} d'(v_k, z_1)}{(B_k + a_z z_1 d(v_k, z_1)^{-\lambda})^2} w_k = 0 \]
$\rho = 1$, i.e. locating a single new facility z_1 on a general network

The objective function of the 1–facility competitive Huff location model with discrete demand

$$D(z_1) = a_{z_1} \sum_{k=1}^{n} \frac{d(v_k,z_1)^{-\lambda}}{\sum_{s_j} a_{s_j} d(v_k,s_j)^{-\lambda}} w_k$$

under the assumption of differentiability of the function D at point z_1, the optimality condition

$$a_{z_1} \sum_{k=1}^{n} \frac{B_k d(v_k,z_1)^{-\lambda-1} d'(v_k,z_1)}{(B_k + a_{z_1} d(v_k,z_1)^{-\lambda})^2} w_k = 0$$
Huff location model with discrete demand

1–facility case

- $p = 1$, i.e. locating a single new facility z_1 on a general network
- the objective function of the 1–facility competitive Huff location model with discrete demand
 $$D(z_1) = a_{z_1} \sum_{k=1}^{n} \frac{d(v_k,z_1)^{-\lambda}}{\sum_{s_j} a_{s_j} d(v_k,s_j)^{-\lambda}} w_k$$
- under the assumption of differentiability of the function D at point z_1, the optimality condition
 $$a_{z_1} \sum_{k=1}^{n} \frac{B_k d(v_k,z_1)^{-\lambda-1} d'(v_k,z_1)}{(B_k + a_{z_1} d(v_k,z_1)^{-\lambda})^2} w_k = 0$$
p–facility case on a segment

- The network is degenerated \(S = (N, E) \) into a segment and the distance \(d(x, y) \equiv |x - y| \) and \(\lambda = 2 \) are chosen; the objective function
 \[
 D(z_1, \ldots, z_p) = \sum_{i=1}^{p} \sum_{k=1}^{n} \frac{a_{z_i}(v_k - z_i)^{-2}}{\sum_{s_j} a_{s_j}(v_k - s_j)^{-2}} w_k
 \]

- The optimality condition
 \[
 a_{z_l} \sum_{k=1}^{n} \left(\frac{(v_k - z_l)^{-3}}{\left(\sum_{s_j} a_{s_j}(v_k - s_j)^{-2} \right)^2} \sum_{i=1}^{m} a_{y_i}(v_k - y_i)^{-2} \right) w_k = 0, \quad l \in \{1, \ldots, p\}.
 \]
the network is degenerated $S = (N, E)$ into a segment and the distance $d(x, y) \equiv |x - y|$ and $\lambda = 2$ are chosen; the objective function

$$D(z_1, \ldots, z_p) = \sum_{i=1}^{p} \sum_{k=1}^{n} \frac{a_{z_i}(v_k-z_i)^{-2}}{\sum_{s_j} a_{s_j}(v_k-s_j)^{-2}} w_k$$

the optimality condition

$$a_{z_l} \sum_{k=1}^{n} \left(\frac{(v_k-z_l)^{-3}}{\left(\sum_{s_j} a_{s_j}(v_k-s_j)^{-2}\right)^2} \sum_{i=1}^{m} a_{y_i}(v_k - y_i)^{-2} \right) w_k = 0,$$

$l \in \{1, \ldots, p\}$
Outline

1. Introduction
 - Definition of a location problem
 - A couple of famous examples of location problems on networks
 - Location problems in a competitive environment

2. Problem definition
 - Huff location model with continuous demand
 - Huff location model with discrete demand

3. Algorithms and results
 - VNS metaheuristic
 - Computational results

4. Conclusions and future research lines
Variable Neighborhood Search - metaheuristic for solving global optimization problems global min$_{x \in X} f(x)$

avoiding **entrapments in local minima** gives near-optimal solutions

concept of VNS - a very simple one

GLOB - software for minimization of a **continuous** function subject to **box** constraints

built-in VNS metaheuristic used
Repeat until the predefined stopping criterion is met:

- (1) Set $k \leftarrow 1$
- (2) Until $k > k_{\text{max}}$ repeat the following steps:
 - (a) *Shaking*: Generate a point x' at random from $N_k(x)$.
 - (b) *Local search*: Apply some local search method with x' as the initial solution; denote by x'' the so obtained local minimum.
 - (c) *Move or not*: If x'' is better than the incumbent, move there ($x \leftarrow x''$) and set $k \leftarrow 1$; otherwise set $k \leftarrow k + 1$.

Outline

1. Introduction
 - Definition of a location problem
 - A couple of famous examples of location problems on networks
 - Location problems in a competitive environment

2. Problem definition
 - Huff location model with continuous demand
 - Huff location model with discrete demand

3. Algorithms and results
 - VNS metaheuristic
 - Computational results

4. Conclusions and future research lines
Design of experiments

- location problems with discrete demand on a segment
- \(d(x, y) \equiv |x - y|, \lambda = 2 \)
- number of customers: 2, 50, 100, 500 and 1000
- customers and demand, attractiveness of the facilities and locations of the existing ones - all uniformly chosen
Results

<table>
<thead>
<tr>
<th>m - p</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>51.02330</td>
<td>100.00000</td>
<td>100.00000</td>
<td>100.00000</td>
</tr>
<tr>
<td>5</td>
<td>1.43331</td>
<td>100.00000</td>
<td>100.00000</td>
<td>100.00000</td>
</tr>
<tr>
<td>10</td>
<td>1.78919</td>
<td>100.00000</td>
<td>100.00000</td>
<td>100.00000</td>
</tr>
<tr>
<td>20</td>
<td>0.05030</td>
<td>100.00000</td>
<td>100.00000</td>
<td>100.00000</td>
</tr>
</tbody>
</table>

Table: The total demand captured by new facilities in case of 2 customers
Results

<table>
<thead>
<tr>
<th>m - p</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.04540</td>
<td>94.15430</td>
<td>99.08531</td>
<td>99.93461</td>
</tr>
<tr>
<td>5</td>
<td>14.94558</td>
<td>70.94032</td>
<td>93.45164</td>
<td>98.57493</td>
</tr>
<tr>
<td>10</td>
<td>19.25157</td>
<td>61.57504</td>
<td>88.16439</td>
<td>86.43752</td>
</tr>
<tr>
<td>20</td>
<td>3.36729</td>
<td>42.47468</td>
<td>57.60257</td>
<td>81.13353</td>
</tr>
</tbody>
</table>

Table: The total demand captured by new facilities in case of 50 customers
Results

Table: The total demand captured by new facilities in case of 100 customers

<table>
<thead>
<tr>
<th>m - p</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31.69661</td>
<td>90.12362</td>
<td>98.63155</td>
<td>99.81969</td>
</tr>
<tr>
<td>5</td>
<td>13.00171</td>
<td>53.08964</td>
<td>84.63456</td>
<td>94.31159</td>
</tr>
<tr>
<td>10</td>
<td>16.36184</td>
<td>38.37238</td>
<td>74.82929</td>
<td>82.20840</td>
</tr>
<tr>
<td>20</td>
<td>2.05894</td>
<td>33.19976</td>
<td>57.27996</td>
<td>38.24951</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>m - p</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.56583</td>
<td>93.08363</td>
<td>97.14734</td>
<td>99.39234</td>
</tr>
<tr>
<td>5</td>
<td>11.25880</td>
<td>52.75286</td>
<td>73.75866</td>
<td>80.24836</td>
</tr>
<tr>
<td>10</td>
<td>10.01099</td>
<td>46.68768</td>
<td>53.73204</td>
<td>71.87866</td>
</tr>
<tr>
<td>20</td>
<td>0.77091</td>
<td>25.64121</td>
<td>39.72746</td>
<td>53.71175</td>
</tr>
</tbody>
</table>

Table: The total demand captured by new facilities in case of 500 customers
Results

<table>
<thead>
<tr>
<th>m - p</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78.15515</td>
<td>85.67189</td>
<td>94.83368</td>
<td>98.28328</td>
</tr>
<tr>
<td>5</td>
<td>16.67878</td>
<td>65.24446</td>
<td>70.99359</td>
<td>85.08515</td>
</tr>
<tr>
<td>10</td>
<td>14.56825</td>
<td>31.05576</td>
<td>51.47778</td>
<td>57.40904</td>
</tr>
<tr>
<td>20</td>
<td>9.47076</td>
<td>21.94529</td>
<td>35.87838</td>
<td>47.77585</td>
</tr>
</tbody>
</table>

Table: The total demand captured by new facilities in case of 1000 customers
Conclusions and future research lines

- first step: competitive Huff location model with discrete demand on a segment
- our ultimate goal: competitive Huff location model with continuous demand on networks
Thank you!