Divisor class groups of singular varieties

HELMUT A. HAMM

Sevilla, 2017
Joint papers with Lê Dũng Tráng (selection):

Joint papers with Lê Dũng Tráng (selection):

Introduction

X complex algebraic variety (reduced, of pure dimension)
Weil divisor on X: $\sum n_j D_j$, $n_j \in \mathbb{Z}$, D_j irreducible hypersurface in X
Principal divisor: of the form $\sum (\text{ord}_D f) D$, with f rational and invertible on X.
Frequent assumption: $\text{codim}_X \text{Sing}(X) \geq 2$, then notion $\text{ord}_D f$ clear.
Introduction

X complex algebraic variety (reduced, of pure dimension)
Weil divisor on X: $\sum n_jD_j$, $n_j \in \mathbb{Z}$, D_j irreducible hypersurface in X

Principal divisor: of the form $\sum (\text{ord}_D f)D$, with f rational and invertible on X.
Frequent assumption: $\text{codim}_X \text{Sing}(X) \geq 2$, then notion $\text{ord}_D f$ clear.
In general one can reduce to this case using normalization $\pi : \hat{X} \to X$:
$\text{ord}_D f := \sum (\text{ord}_{\hat{D}_j} \hat{f})\deg(\hat{D}_j \to D)$, where \hat{D}_1, \ldots are the irreducible components of $\pi^{-1}(D)$. See Fulton, Intersection theory.
Introduction

X complex algebraic variety (reduced, of pure dimension)
Weil divisor on X: $\sum n_j D_j$, $n_j \in \mathbb{Z}$, D_j irreducible hypersurface in X
Principal divisor: of the form $\sum (\text{ord}_D f) D$, with f rational and invertible on X.
Frequent assumption: $\text{codim}_X \text{Sing}(X) \geq 2$, then notion $\text{ord}_D f$ clear.
In general one can reduce to this case using normalization $
\pi: \hat{X} \to X:
\text{ord}_D f := \sum (\text{ord}_{\hat{D}_j} \hat{f}) \deg(\hat{D}_j \to D)$, where \hat{D}_1, \ldots are the irreducible components of $\pi^{-1}(D)$. See Fulton, Intersection theory.
$\text{Cl}(X) := \{\text{Weil divisors}\}/\{\text{principal divisors}\}$: Weil divisor class group.
Aim: Lefschetz (hyperplane section) theorem for $\text{Cl}(X)$.
Smooth case

If X is smooth: $Cl(X) \simeq Pic(X) \simeq H^1(X, \mathcal{O}_X^*)$.

Theorem f: Morphism between smooth varieties such that $H^j(X; Z) \simeq H^j(Y; Z)$, $j = 1, 2$, then $Pic(X) \simeq Pic(Y)$.

Proof: Case X, Y compact: switch to analytic category (GAGA), exponential sequence: $H^1(X; Z) \to H^1(X, \mathcal{O}_X) \to Pic(X) \to H^2(X; Z) \to H^2(X, \mathcal{O}_X) \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \to H^1(Y; Z) \to H^1(Y, \mathcal{O}_Y) \to Pic(Y) \to H^2(Y; Z) \to H^2(Y, \mathcal{O}_Y)$.

By assumption, first and fourth vertical arrow bijective. So by Hodge theory, second and fifth arrow, too. Now apply five lemma. General case: [H-L 2005], using mixed Hodge structures.
Smooth case

If X is smooth: $Cl(X) \simeq Pic(X) \simeq H^1(X, \mathcal{O}_X^*)$.

Theorem

Let $f : Y \to X$ be a morphism between smooth varieties such that $H^j(X; \mathbb{Z}) \simeq H^j(Y; \mathbb{Z})$, $j = 1, 2$, then $Pic(X) \simeq Pic(Y)$.

Proof:

Case X, Y compact: switch to analytic category (GAGA), exponential sequence:

$$
\begin{align*}
H^1(X; \mathbb{Z}) &\to H^1(X, \mathcal{O}_X^*) \to Pic(X) \to H^2(X; \mathbb{Z}) \to H^2(X, \mathcal{O}_X^*)
\end{align*}
$$

↓ ↓ ↓ ↓ ↓

$$
\begin{align*}
H^1(Y; \mathbb{Z}) &\to H^1(Y, \mathcal{O}_Y^*) \to Pic(Y) \to H^2(Y; \mathbb{Z}) \to H^2(Y, \mathcal{O}_Y^*)
\end{align*}
$$

By assumption, first and fourth vertical arrow bijective. So by Hodge theory, second and fifth arrow, too. Now apply five lemma.

General case: [H-L, 2005], using mixed Hodge structures.
If X is smooth: $Cl(X) \simeq Pic(X) \simeq H^1(X, \mathcal{O}_X^*)$.

Theorem

$f : Y \to X$ morphism between smooth varieties such that $H^j(X; \mathbb{Z}) \simeq H^j(Y; \mathbb{Z}), j = 1, 2$, then $Pic(X) \simeq Pic(Y)$.

Proof:

Case X, Y compact: switch to analytic category (GAGA), exponential sequence:

\[
\begin{array}{ccccccc}
H^1(X; \mathbb{Z}) & \to & H^1(X, \mathcal{O}_X) & \to & Pic(X) & \to & H^2(X; \mathbb{Z}) & \to & H^2(X, \mathcal{O}_X) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
H^1(Y; \mathbb{Z}) & \to & H^1(Y, \mathcal{O}_Y) & \to & Pic(Y) & \to & H^2(Y; \mathbb{Z}) & \to & H^2(Y, \mathcal{O}_Y)
\end{array}
\]

By assumption, first and fourth vertical arrow bijective. So by Hodge theory, second and fifth arrow, too. Now apply five lemma.
If X is smooth: $\text{Cl}(X) \simeq \text{Pic}(X) \simeq H^1(X, O^*_X)$.

Theorem

$f : Y \to X$ morphism between smooth varieties such that $H^j(X; \mathbb{Z}) \simeq H^j(Y; \mathbb{Z}), j = 1, 2$, then Pic$(X) \simeq \text{Pic}(Y)$.

Proof: Case X, Y compact: switch to analytic category (GAGA), exponential sequence:

$$
egin{array}{ccccccc}
H^1(X; \mathbb{Z}) & \to & H^1(X, O_X) & \to & \text{Pic}(X) & \to & H^2(X; \mathbb{Z}) & \to & H^2(X, O_X) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
H^1(Y; \mathbb{Z}) & \to & H^1(Y, O_Y) & \to & \text{Pic}(Y) & \to & H^2(Y; \mathbb{Z}) & \to & H^2(Y, O_Y)
\end{array}
$$

By assumption, first and fourth vertical arrow bijective. So by Hodge theory, second and fifth arrow, too. Now apply five lemma. General case: [H-Lê, 2005], using mixed Hodge structures.
The following theorem has been proved in [H-Lê, 1985] and later in Goresky-MacPherson, Stratified Morse theory:
The following theorem has been proved in [H-Lê, 1985] and later in Goresky-MacPherson, Stratified Morse theory:

Theorem

Let $f : Z \to \mathbb{P}_N$ be a quasi-finite morphism, Z smooth of dimension n, H hyperplane in \mathbb{P}_N, U a good neighbourhood of H.

a) $H^j(Z, f^{-1}(U); \mathbb{Z}) = 0, j \leq n - 1,$
A Lefschetz theorem for integral cohomology

The following theorem has been proved in [H-Lê, 1985] and later in Goresky-MacPherson, Stratified Morse theory:

Theorem

Let $f : Z \to \mathbb{P}_N$ be a quasi-finite morphism, Z smooth of dimension n, H hyperplane in \mathbb{P}_N, U a good neighbourhood of H.

a) $H^j(Z, f^{-1}(U); \mathbb{Z}) = 0, j \leq n - 1$,

b) if H is general: $H^j(Z, f^{-1}(H); \mathbb{Z}) = 0, j \leq n - 1$.
The following theorem has been proved in [H-Lê, 1985] and later in Goresky-MacPherson, Stratified Morse theory:

Theorem

Let $f : Z \rightarrow \mathbb{P}_N$ be a quasi-finite morphism, Z smooth of dimension n, H hyperplane in \mathbb{P}_N, U a good neighbourhood of H.

a) $H^j(Z, f^{-1}(U); \mathbb{Z}) = 0, j \leq n - 1,$

b) if H is general: $H^j(Z, f^{-1}(H); \mathbb{Z}) = 0, j \leq n - 1.$
The following theorem has been proved in [H-Lê, 1985] and later in Goresky-MacPherson, Stratified Morse theory:

Theorem

Let \(f : Z \to \mathbb{P}_N \) be a quasi-finite morphism, \(Z \) smooth of dimension \(n \), \(H \) hyperplane in \(\mathbb{P}_N \), \(U \) a good neighbourhood of \(H \).

a) \(H^j(Z, f^{-1}(U); \mathbb{Z}) = 0, j \leq n - 1 \),

b) if \(H \) is general: \(H^j(Z, f^{-1}(H); \mathbb{Z}) = 0, j \leq n - 1 \).

Special case: \(f \) inclusion: \(Z \) quasi-projective.
Lefschetz theorem for Weil divisor class groups

Theorem

Let $X \subset \mathbb{P}_N$ be a quasi-projective variety, $\dim X \geq 4$, H general hyperplane in \mathbb{P}_N, $Y := X \cap H$. Then $Cl(X) \simeq Cl(Y)$.
Theorem

Let $X \subset \mathbb{P}_N$ be a quasi-projective variety, $\dim X \geq 4$, H general hyperplane in \mathbb{P}_N, $Y := X \cap H$. Then $\text{Cl}(X) \simeq \text{Cl}(Y)$.

Proof: The case $\text{codim}_X \text{Sing}(X) \geq 2$ has already been treated in [H-Lê, 2005]: Then $\text{Sing}(Y) = (\text{Sing}(X)) \cap H$ has codimension ≥ 2 in Y, too.

By the two theorems before, $\text{Cl}(X \setminus \text{Sing}(X)) \simeq \text{Cl}(Y \setminus \text{Sing}(Y))$, so $\text{Cl}(X) \simeq \text{Cl}(X \setminus \text{Sing}(X)) \simeq \text{Cl}(Y \setminus \text{Sing}(Y)) \simeq \text{Cl}(Y)$.
Lefschetz theorem for Weil divisor class groups

Theorem

Let \(X \subset \mathbb{P}_N \) be a quasi-projective variety, \(\dim X \geq 4 \), \(H \) general hyperplane in \(\mathbb{P}_N \), \(Y := X \cap H \). Then \(Cl(X) \simeq Cl(Y) \).

Proof: The case \(\text{codim}_X \text{Sing}(X) \geq 2 \) has already been treated in [H-Lê, 2005]: Then \(\text{Sing}(Y) = (\text{Sing}(X)) \cap H \) has codimension \(\geq 2 \) in \(Y \), too.

By the two theorems before, \(Cl(X \setminus \text{Sing}(X)) \simeq Cl(Y \setminus \text{Sing}(Y)) \), so \(Cl(X) \simeq Cl(X \setminus \text{Sing}(X)) \simeq Cl(Y \setminus \text{Sing}(Y)) \simeq Cl(Y) \).

General case: Let \(\pi : \hat{X} \to X \) be the normalization.

After removing some subspace of codimension \(\geq 2 \) (which has no influence on \(Cl(X), Cl(Y) \)) we may assume:

\(\hat{X} \) smooth, \(D := \text{Sing}(X) \) smooth of codimension 1,

\(\pi : \pi^{-1}(D) \to D \) unramified covering.

\(D = D_1 \cup \ldots \cup D_r \): decomposition into connected components,

\(\pi^{-1}(D_j) = \hat{D}_{j1} \cup \ldots \) likewise.
By Lefschetz for integral homology:

a) \(H^0(D; \mathbb{Z}) \simeq H^0(D \cap H; \mathbb{Z}) \), so \(D^*_j := D_j \cap H \) is connected \(\neq \emptyset \),

b) \(H^0(\pi^{-1}(D_j); \mathbb{Z}) \simeq H^0(\pi^{-1}(D_j \cap H); \mathbb{Z}) \), i.e. \(\hat{D}^*_j := \hat{D}_{jk} \cap H \) is connected \(\neq \emptyset \).

By the two theorems before (note: \(X \setminus D \) and \(\hat{X} \) are smooth):

c) \(Cl(X \setminus D) \simeq Cl(Y \setminus D) \),

d) \(Cl(\hat{X}) \simeq Cl(\hat{Y}) \).
By Lefschetz for integral homology:

a) $H^0(D; \mathbb{Z}) \simeq H^0(D \cap H; \mathbb{Z})$, so $D^*_j := D_j \cap H$ is connected $\neq \emptyset$,

b) $H^0(\pi^{-1}(D_j); \mathbb{Z}) \simeq H^0(\pi^{-1}(D_j \cap H); \mathbb{Z})$, i.e. $\hat{D}^*_j := \hat{D}_{jk} \cap H$ is connected $\neq \emptyset$.

By the two theorems before (note: $X \setminus D$ and \hat{X} are smooth):

c) $Cl(X \setminus D) \simeq Cl(Y \setminus D)$,

d) $Cl(\hat{X}) \simeq Cl(\hat{Y})$.

Because of a):

$$
\begin{array}{cccc}
\mathbb{Z}^r & \xrightarrow{\phi} & Cl(X) & \rightarrow & Cl(X \setminus Sing X) & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \\
\mathbb{Z}^r & \xrightarrow{\psi} & Cl(Y) & \rightarrow & Cl(Y \setminus H \cap Sing X) & \rightarrow & 0
\end{array}
$$
\[\mathbb{Z}^r \xrightarrow{\phi} \text{Cl}(X) \to \text{Cl}(X \setminus \text{Sing } X) \to 0 \]

\[\mathbb{Z}^r \xrightarrow{\psi} \text{Cl}(Y) \to \text{Cl}(Y \setminus H \cap \text{Sing } X) \to 0 \]

Of course, the first vertical arrow is bijective; by c) the third one is bijective, too.

Need: \(\text{im } \phi \to \text{im } \psi \) injective.

Let \(\sum n_j D_j \) be mapped to a principal divisor \(\text{div } f \) on \(Y \), \(f \) rational on \(Y \).

We must show: \(\sum n_j D_j \) is a principal divisor (on \(X \)), too.

Now \(\text{div } f = \text{push-forward of } \text{div } \hat{f} \), \(\hat{f} \) corresponding rational function on \(\hat{Y} \).

By d): \(\text{div } \hat{f} = \text{image of } \text{a principal divisor } \text{div } \hat{g} \) on \(\hat{g} \).

Then \(\sum n_j D_j = \text{div } g \) principal divisor, \(g \) corresponding rational function on \(X \).
\[
\begin{array}{cccccc}
\mathbb{Z}^r & \xrightarrow{\phi} & Cl(X) & \rightarrow & Cl(X \setminus \text{Sing } X) & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \\
\mathbb{Z}^r & \xrightarrow{\psi} & Cl(Y) & \rightarrow & Cl(Y \setminus H \cap \text{Sing } X) & \rightarrow & 0
\end{array}
\]

Of course, the first vertical arrow is bijective; by c) the third one is bijective, too.

Need: \(im \phi \rightarrow im \psi \) injective.
\[
\begin{array}{cccc}
\mathbb{Z}^r & \overset{\phi}{\rightarrow} & Cl(X) & \rightarrow & Cl(X \setminus Sing X) & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \\
\mathbb{Z}^r & \overset{\psi}{\rightarrow} & Cl(Y) & \rightarrow & Cl(Y \setminus H \cap Sing X) & \rightarrow & 0
\end{array}
\]

Of course, the first vertical arrow is bijective; by c) the third one is bijective, too.

Need: \(im \phi \rightarrow im \psi\) injective.

Let \(\sum n_j D_j\) be mapped to a principal divisor \(div f\) on \(Y\), \(f\) rational on \(Y\).

We must show: \(\sum n_j D_j\) is a principal divisor (on \(X\)), too.

Now \(div f = \) push-forward of \(div \hat{f}\), \(\hat{f}\) = corresponding rational function on \(\hat{Y}\). By d): \(div \hat{f} = \) image of a principal divisor \(div \hat{g}\) on \(\hat{g}\).

Then \(\sum n_j D_j = div g\) principal divisor, \(g\) corresponding rational function on \(X\).
We skipped the question how to define the pull-back $\text{Cl}(X) \to \text{Cl}(Y)$. In the case of the Picard group we have always a pull-back, in the case of Cl one needs a condition on the mapping. Here: "Gysin map" in the sense of Fulton, Intersection theory. Also for flat mappings pull-back defined, one can use similar method as above to show isomorphy of Cl.
Lefschetz theorem for Cartier divisor class groups

In the singular case Weil and Cartier divisors are usually different. For quasi-projective varieties: Cartier divisor class group = Picard group.

A Lefschetz theorem for the Picard group has been derived in [H-Lê, 2010], it involves depth conditions:

Theorem
Let $X \subset \mathbb{P}^N$ be a quasi-projective variety, $\dim X \geq 4$, H general hyperplane in \mathbb{P}^N, $Y := X \cap H$. Assume:

- $\text{depth} \, \text{Sing}(X) \geq 3$,
- $H^3(X, X \{x\}; \mathbb{Z}) = 0$ for all $x \in X$.

Then $\text{Pic}(X) \cong \text{Pic}(Y)$.

Note that the assumption implies that X and Y are normal, in this case Lefschetz for Weil divisor classes was easier to prove.

So we see that the treatment of Weil divisors involves much less assumptions!
Lefschetz theorem for Cartier divisor class groups

In the singular case Weil and Cartier divisors are usually different. For quasi-projective varieties: Cartier divisor class group = Picard group.
A Lefschetz theorem for the Picard group has been derived in [H-Lê, 2010], it involves depth conditions:

Theorem

Let $X \subset \mathbb{P}_N$ be a quasi-projective variety, $\dim X \geq 4$, H general hyperplane in \mathbb{P}_N, $Y := X \cap H$. Assume:

- $\text{depth}_{\text{Sing}}(X) \mathcal{O}_X \geq 3$,
- $H^3(X, X \setminus \{x\}; \mathbb{Z}) = 0$ for all $x \in X$.

Then $\text{Pic}(X) \simeq \text{Pic}(Y)$.
Lefschetz theorem for Cartier divisor class groups

In the singular case Weil and Cartier divisors are usually different. For quasi-projective varieties: Cartier divisor class group = Picard group.

A Lefschetz theorem for the Picard group has been derived in [H-Lê, 2010], it involves depth conditions:

Theorem

Let $X \subset \mathbb{P}_N$ be a quasi-projective variety, $\dim X \geq 4$, H general hyperplane in \mathbb{P}_N, $Y := X \cap H$. Assume:

$\text{depth}_{\text{Sing}}(X) \mathcal{O}_X \geq 3$, $H^3(X, X \setminus \{x\}; \mathbb{Z}) = 0$ for all $x \in X$. Then $\text{Pic}(X) \simeq \text{Pic}(Y)$.

Note that the assumption implies that X and Y are normal, in this case Lefschetz for Weil divisor classes was easier to prove. So we see that the treatment of Weil divisors involves much less assumptions!
Use of neighbourhoods

In Lefschetz for Weil divisor classes: better result if we replace H by a good neighbourhood U of H - in transcendental topology.
In Lefschetz for Weil divisor classes: better result if we replace H by a good neighbourhood U of H - in transcendental topology. From now on assume that X is a projective variety - then there is no difference if one works in the algebraic or analytic category. Then Y is a deformation retract of $X \cap U$, so no difference for integral homology between taking U or H.

This changes in the case of divisor classes. Here we obtain weaker hypotheses with U. Cf. to Grothendieck, SGA2.
Theorem

([H, 2008]) Suppose that X is projective of dimension ≥ 3. Then $\text{Cl}(X) \cong \text{Cl}(X \cap U)$.

But it seems hopeless to compare $U \cap X$ and $H \cap X$ directly.
Theorem

([H, 2008]) Suppose that X is projective of dimension ≥ 3. Then $\text{Cl}(X) \cong \text{Cl}(X \cap U)$.

Theorem

(loc. cit.) Suppose that X is projective, $\text{depth } \mathcal{O}_{X \setminus H} \geq 3$, $H^3(X, X \setminus \{x\}; \mathbb{Z}) = 0$ for all $x \in X \setminus H$. Then $\text{Pic}(X) \cong \text{Pic}(X \cap U)$.

But it seems hopeless to compare $U \cap X$ and $H \cap X$ directly.
Chow groups of an algebraic variety X: $A_k(X)$.
Put $A^k(X) := A_{n-k}(X)$, $n := \dim X$ - even if X is singular.
$A^0(X) \cong \mathbb{Z}^r$ if X has r irreducible components.
$A^1(X) = Cl(X)$.

Theorem: Suppose that X is a projective variety, H general hyperplane, $\dim X \geq 2k + 2$. Then $A^k(X) \cong A^k(Y)$ if $k = 0, 1$.
Proof: $k = 0$: Apply Lefschetz for integral homology to $X \setminus \text{Sing}(X)$.
$k = 1$: see Lefschetz for Weil divisor classes.
Chow groups

Chow groups of an algebraic variety X: $A_k(X)$.
Put $A^k(X) := A_{n-k}(X)$, $n := \dim X$ - even if X is singular.
$A^0(X) \cong \mathbb{Z}^r$ if X has r irreducible components.
$A^1(X) = Cl(X)$.

Theorem

Suppose that X is a projective variety, H general hyperplane,
$\dim X \geq 2k + 2$. Then $A^k(X) \cong A^k(Y)$ if $k = 0, 1$.
Chow groups

Chow groups of an algebraic variety X: $A_k(X)$.
Put $A^k(X) := A_{n-k}(X)$, $n := \text{dim } X$ - even if X is singular.
$A^0(X) \cong \mathbb{Z}^r$ if X has r irreducible components.
$A^1(X) = Cl(X)$.

Theorem

Suppose that X is a projective variety, H general hyperplane, $\dim X \geq 2k + 2$. Then $A^k(X) \cong A^k(Y)$ if $k = 0, 1$.

Proof: $k = 0$: Apply Lefschetz for integral homology to $X \setminus Sing(X)$.
$k = 1$: see Lefschetz for Weil divisor classes.
What happens if $k > 1$?
Special case: Let Z be a smooth hypersurface in \mathbb{P}_n. We can write $Z \simeq X \cap H$, $X \simeq \mathbb{P}_n$ projective. If the preceding result generalized to any k we would have $A^k(Z) \simeq \mathbb{Z}$ if $n \geq 2k + 2$. Cf. Hartshorne’s question.
What happens if $k > 1$?

Special case: Let Z be a smooth hypersurface in \mathbb{P}^n. We can write $Z \cong X \cap H$, $X \cong \mathbb{P}^n$ projective. If the preceding result generalized to any k we would have $A^k(Z) \cong \mathbb{Z}$ if $n \geq 2k + 2$. Cf. Hartshorne’s question.

Too naive approach for surjectivity: Induction on k. Induction step from $k - 1$ to k:

Let C be an irreducible subvariety of Y of codimension k. Then there is a homogeneous polynomial g such that $g|C = 0$, $g|Y \neq 0$. Put $Z := X \cap \{g = 0\}$. Then Z and $Z \cap Y$ are divisors on X resp. Y. If we could ignore the hypothesis that H is general (which is not possible!) we would obtain, by induction hypothesis, that $A^{k-1}(Z) \to A^{k-1}(Z \cap Y)$ is surjective. Now C represents an element of $A^{k-1}(Z \cap Y)$, so we would find a linear combination of irreducible subspaces of codimension $k - 1$ in Z, hence of codimension k in X whose class is mapped to the one of C. It represents an inverse image of the class of C under $A^k(X) \to A^k(Y)$.
Easier if we work with U:

Theorem

(see [H, 2010]) Suppose that X is a projective variety, U a suitable neighbourhood of a hyperplane H, $\dim X \geq k + 2$. Then $A^k(X) \rightarrow A^k(X \cap U)$ is bijective.
Another application

In the proof of we needed that the restriction is well-defined. This is not only true for Gysin homomorphisms, here another example where a similar approach works:

Let $w_1, \ldots, w_m > 0$ be integers which are relatively prime, $w := (w_1, \ldots, w_m)$ and $\mathbb{P}_w := (\mathbb{C}^m \setminus \{0\})/\mathbb{C}^*$ the corresponding weighted projective space.

Let V be a purely n-dimensional subvariety of \mathbb{P}_w, $n \geq 1$. It is of the form $X \setminus \{0\}/\mathbb{C}^*$ where $X \subset \mathbb{C}^m$ is defined by weighted homogeneous polynomials. We assume that no irreducible component of X is contained in a coordinate hyperplane.

Put $\tilde{w} := (1, w_1, \ldots, w_m)$. Then $\mathbb{P}_{\tilde{w}}$ is a compactification of \mathbb{C}^m.

Let \bar{X} be the closure of X in $\mathbb{P}_{\tilde{w}}$. Put $X_\infty := \bar{X} \setminus X$.
Proposition

a) \(Cl(V) \cong Cl(\tilde{X}) \).
Proposition

a) \(Cl(V) \cong Cl(\bar{X}) \).

b) Suppose that \(V \) is irreducible: Then there is an exact sequence
\[
0 \to \mathbb{Z} \to Cl(V) \to Cl(X) \to 0,
\]
hence \(Cl(V)_\mathbb{Q} \cong Cl(X) \oplus \mathbb{Q} \).
Proposition

<table>
<thead>
<tr>
<th>(a)</th>
<th>$\text{Cl}(V) \cong \text{Cl}(\tilde{X})$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>Suppose that V is irreducible: Then there is an exact sequence $0 \to \mathbb{Z} \to \text{Cl}(V) \to \text{Cl}(X) \to 0$, hence $\text{Cl}(V)_{\mathbb{Q}} \cong \text{Cl}(X) \oplus \mathbb{Q}$.</td>
</tr>
</tbody>
</table>
Proposition

a) \(Cl(V) \cong Cl(\bar{X}) \).

b) Suppose that \(V \) is irreducible: Then there is an exact sequence
\[0 \to \mathbb{Z} \to Cl(V) \to Cl(X) \to 0, \]
hence \(Cl(V)_\mathbb{Q} \cong Cl(X) \oplus \mathbb{Q} \).

This generalizes a result which is known in the homogeneous case to the weighted homogeneous one.
Proposition

a) $\text{Cl}(V) \cong \text{Cl}(\bar{X})$.

b) Suppose that V is irreducible: Then there is an exact sequence
$0 \to \mathbb{Z} \to \text{Cl}(V) \to \text{Cl}(X) \to 0$, hence $\text{Cl}(V)_{\mathbb{Q}} \cong \text{Cl}(X) \oplus \mathbb{Q}$.

This generalizes a result which is known in the homogeneous case to the weighted homogeneous one.

Proof: a) According to Fulton, Intersection theory, there is a pull-back for flat mappings, so the projection $\pi: \bar{X} \setminus \{0\} \to V$ induces $\text{Cl}(V) \to \text{Cl}(\bar{X} \setminus \{0\})$.

Note that $\pi|_{X_{\infty}}$ is bijective, so the composed mapping $\text{Cl}(V) \to \text{Cl}(\bar{X} \setminus \{0\}) \to \text{Cl}(X_{\infty})$ is bijective.

Hence $\text{Cl}(V) \to \text{Cl}(\bar{X} \setminus \{0\})$ must be injective.

Let D be the divisor in V obtained by intersecting with all coordinate hyperplanes. Then we have a commutative diagram
\[\mathbb{Z}^m \rightarrow Cl(V) \rightarrow Cl(V \setminus D) \rightarrow 0 \]
\[\mathbb{Z}^m \rightarrow Cl(\tilde{X} \setminus \{0\}) \rightarrow Cl(\pi^{-1}(V \setminus D)) \rightarrow 0 \]

Now the last vertical arrow is induced by the projection of a line bundle onto its base, hence bijective by [Fu].
The first vertical arrow is bijective, of course. So the second one is surjective, and we know already the injectivity.
Finally, \(Cl(\tilde{X}) \cong Cl(\tilde{X} \setminus \{0\}) \) because \(n + 1 \geq 2 \).

b) Note that \(X_\infty \cong V \) is irreducible, hence there is an exact sequence \(\mathbb{Z} \rightarrow Cl(\tilde{X}) \rightarrow Cl(X) \rightarrow 0 \). And the first mapping must be injective.