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First word

Michael Atiyah (1929-)
People think mathematics begins when you write down a theorem followed by a proof.
That’s not the beginning, that’s the end. For me the creative place in mathematics
comes before you start to put things down on paper, before you try to write a formula.
You picture various things, you turn them over in your mind. You’re trying to create,
just as a musician is trying to create music, or a poet. There are no rules laid down.
You have to do it your own way. But at the end, just as a composer has to put it
down on paper, you have to write things down. But the most important stage is
understanding. A proof by itself doesn’t give you understanding. You can have a long
proof and no idea at the end of why it works. But to understand why it works, you
have to have a kind of gut reaction to the thing. You’ve got to feel it.
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Hutchinson Equation

In the Logistic equation, the growth rate per capita is a decreasing function of the
current population size. But in the reality, the female individual may need some
maturing time to be able to reproduce. Hence in some cases, the growth rate per
capita should instead depend on the population size of a past time. That is the delay
effect in the density-dependent population growth. In 1948, British-American biologist
George Evelyn Hutchinson (1903-1991) proposed the Logistic equation with delay
(now called Hutchinson equation) (τ is the time delay).

dP(t)

dt
= aP(t)

(
1−

P(t − τ)

K

)

Left: George Evelyn Hutchinson (1903-1991) Right: Simulation of Hutchinson
equation
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Mackey-Glass Equation and Nicholson’s Blowfly equation

In 1977, Mackey and Glass constructed an equation of physiological control (for

respiratory studies, or for white blood cells):
dx

dt
= λ−

αVmx(t − τ)

θn + xn(t − τ)
. It was shown

that when λ increases, a sequence of period-doubling Hopf bifurcations occurs and
chaotic behavior exists for some parameter values. A similar equation is Nicholson’s

equation for blowfly population
dx

dt
= βxn(t − τ) exp(−x(t − τ))− αx(t)

M.C. Mackey, L. Glass, Oscillation and chaos in physiological control systems.
Science, 1977.
A. Nicholson, An outline of the dynamics of animal populations, Aust. J. Zool., 1954.
W. Gurney, S. Blythe, R. Nisbet, Nicholson’s blowflies revisited, Nature, 1980.

Left: Michael Mackey; Right: Leon Glass



ODE Background One trans-term Logistic equation Proof: local Proof: nonlocal Conversion Steady States Examples Animal Movement Diffusion Taxis Delayed Taxis Two Delays Distributed Delay Conclusions

Delay-induced instability

dP(t)

dt
= aP(t) (1− P(t − τ))

Linearization at P = 1 without time delay:
v ′(t) = −av(t) (so P = 1 is stable when there is no time delay)

Linearization at P = 1 with time delay:
v ′(t) = −av(t − τ)
Characteristic equation: λ+ ae−λτ = 0.

neutral stability: λ = βi cos(βτ) = 0, a sin(βτ) = β

So τ0 =
π

2a
is the value where the stability is lost when τ > τ0. And τn =

(2n + 1)π

2a
is a Hopf bifurcation point.

(Thus P = 1 is stable when the time delay τ <
π

2a
, but it is unstable if τ >

π

2a
.)

Basic lesson: a large delay destabilizes an equilibrium
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Another example

du

dt
= ru(t)[1− au(t)− bu(t − τ)].

Here a and b represent the portions of instantaneous and delayed dependence of the
growth rate respectively, and we assume that a, b ∈ (0, 1) and a + b = 1. Then
u∗ = 1 is an equilibrium.

Linearization at u = 1 with time delay:
v ′(t) = −arv(t)− brv(t − τ)
Characteristic equation: λ+ ar + bre−λτ = 0.

neutral stability: λ = βi

cos(βτ) = −
a

b
, sin(βτ) =

β

br
β = r

√
b2 − a2.

If a ≥ b, then the neutral stability condition cannot be achieved. Indeed one can prove
u∗ is globally stable for any τ > 0.

If a < b, then τ0 =
1

r
√
b2 − a2

arccos
(
−

a

b

)
is the value where the stability is lost

when τ > τ0. And τn =
1

r
√
b2 − a2

(
arccos

(
−

a

b

)
+ 2nπ

)
is a Hopf bifurcation point.
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General case

du

dt
= f (u(t), u(t − τ)).

Here f = f (u,w) is a smooth function, and we assume that u = u∗ is an equilibrium.

Linearization at u = u∗ with time delay:
v ′(t) = fu(u∗, u∗)v(t) + fw (u∗, u∗)v(t − τ)
Characteristic equation: λ− fu − fw e−λτ = 0.

neutral stability: λ = βi

cos(βτ) = −
fu

fw
, sin(βτ) = −

β

fw
β =

√
f 2
w − f 2

u .

If |fu | ≥ |fw |, then the neutral stability condition cannot be achieved. Hence u∗ is
locally stable for any τ > 0.

If |fu | < |fw |, then τ0 =
1√

f 2
w − f 2

u

arccos

(
−

fu

fw

)
is the value where the stability is

lost when τ > τ0.

Lesson: If the strength of instantaneous dependence is stronger than the delayed
dependence, then the equilibrium is always stable; and if it is weaker, then the
equilibrium loses the stability with a larger delay.
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Stability

An equation with k different delays, and variable x ∈ Rn:

ẋ(t) = f (x(t), x(t − τ1), · · · , x(t − τk )). (1)

The characteristic equation takes the form

det

λI − A0 −
m∑
j=1

Aje
−ληj

 = 0,

where Aj (0 ≤ j ≤ m) is an n × n constant matrix, ηj > 0.

[Brauer, 1987, JDE], [Ruan, 2001, Quer.Appl.Math]
An steady state x = x∗ of system (27) is said to be absolutely stable (i.e.,
asymptotically stable independent of the delays) if it is asymptotically stable for all
delays τj ≥ 0 (1 ≤ j ≤ k); and x = x∗ is said to be conditionally stable (i.e.,
asymptotically stable depending on the delays) if it is asymptotically stable for τj
(1 ≤ j ≤ k) in some intervals, but not necessarily for all delays.
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Transcendental characteristic equation

The characteristic equation takes the form

det

λI − A0 −
m∑
j=1

Aje
−ληj

 = 0,

where Aj (0 ≤ j ≤ m) is an n × n constant matrix, ηj > 0.

Most previous work considers n ≤ 3 and m ≤ 2.
Books: Hale-Verduyn Lunel [1993], Kuang [1993], Wu [1996], Smith [2011]
Hale-Huang [1993], Belair-Campbell [1994], Li-Ruan-Wei [1999]
Ruan [2001], Ruan-Wei [2001, 2003], Li-Wei [2005] many many others

Most work has a characteristic equation with only one transcendental term:

P(λ) + e−λτQ(λ) = 0,

where P and Q are polynomials of λ, and the degree of P is greater than that of Q.

1. scalar equations with a single delay or planar systems with only one delay term
2. planar system: ẋ(t) = f (x(t), y(t − τ1)), ẏ(t) = g(x(t − τ2), y(t))
3. planar system: ẋ(t) = f (x(t), y(t))± k1g(x(t − τ), y(t − τ)),
ẏ(t) = h(x(t), y(t))± k2g(x(t − τ), y(t − τ)).
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3. planar system: ẋ(t) = f (x(t), y(t))± k1g(x(t − τ), y(t − τ)),
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where P and Q are polynomials of λ, and the degree of P is greater than that of Q.

1. scalar equations with a single delay or planar systems with only one delay term
2. planar system: ẋ(t) = f (x(t), y(t − τ1)), ẏ(t) = g(x(t − τ2), y(t))
3. planar system: ẋ(t) = f (x(t), y(t))± k1g(x(t − τ), y(t − τ)),
ẏ(t) = h(x(t), y(t))± k2g(x(t − τ), y(t − τ)).
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General form

[Cooke-Grossman, 1982, JMAA], [Ruan, 2001, Quar.Appl.Math]
Characteristic equation

λ2 + aλ+ b + (cλ+ d)e−λτ = 0. (2)

Neutral stability: ±iω, (ω > 0), is a pair of roots.
−ω2 + aωi + b + (cωi + d)e−iωτ = 0.

−d cos(ωτ) + cω sin(ωτ) = b − ω2, −cω cos(ωτ)− d sin(ωτ) = aω

ω4 − (c2 − a2 + 2b)ω2 + (b2 − d2) = 0.

Let T = c2 − a2 + 2b, and D = b2 − d2. Then there is no positive root ω2 if (i)
T < 0 and D > 0; or (ii) T 2 − 4D < 0.

Theorem. If a + c > 0, b + d > 0, and either (i) T < 0 and D > 0; or (ii)
T 2 − 4D < 0 is satisfied, then all roots of (2) have negative real part for any τ ≥ 0.

On the other hand, if (i) D < 0 or (ii) T > 0, D > 0 and T 2 − 4D ≥ 0, then
ω4 − (c2 − a2 + 2b)ω2 + (b2 − d2) = 0 has one or two positive roots. And the critical
delay value can be solved:

τn =
1

ω

(
arccos

(
(d − ac)ω2 − bd

d2 + c2ω2

)
+ 2nπ

)
.
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Example 1: Rosenzwing-MacArthur Model

[Chen-Shi-Wei, 2012, CPAA]



∂u

∂t
− d1uxx = u

(
1−

u

K

)
−

muv

u + 1
, x ∈ (0, lπ), t > 0,

∂v

∂t
− d2vxx = −dv +

mu(t − τ)v

u(t − τ) + 1
, x ∈ (0, lπ), t > 0,

∂u(x , t)

∂x
=
∂v(x , t)

∂x
= 0, x = 0, lπ, t > 0,

u(x , t) = u0(x , t) ≥ 0, v(x , t) = v0(x , t) ≥ 0, x ∈ (0, lπ), t ∈ [−τ, 0],

Constant steady state: (λ, vλ) where λ =
d

m − d
and vλ =

(K − λ)(1 + λ)

Km
.

Main result: For any λ ∈ ((K − 1)/2,K), there exists τ0(λ) > 0 such that (λ, vλ) is
stable when τ < τ0(λ), and (λ, vλ) is unstable when τ > τ0(λ). Moreover

lim
λ→(K−1)/2

τ0(λ) = 0, and lim
λ→K

τ0(λ) =∞; At τ = τ0(λ), a branch of homogenous

periodic orbits bifurcate from (λ, vλ).
There is no parameter region in which the stability persists for all delay τ > 0 (not
absolutely stable).
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Calculation

The characteristic equation

∆n(λ, τ) = λ2 + Anλ+ Bn + Ce−λτ = 0, n = 0, 1, 2, · · · ,

where

An =
(d1 + d2)n2

l2
−
β(k − 1− 2β)

k(1 + β)
,

Bn =
d1d2n4

l4
−

d2n2

l2
β(k − 1− 2β)

k(1 + β)
, C =

r(k − β)

k(β + 1)
.

If ±iσ(σ > 0) is a pair of roots of characteristic equation, then we have{
σ2 − Bn = C cosστ,

σAn = C sinστ,
n = 0, 1, 2, · · · ,

which leads to

σ4 + (A2
n − 2Bn)σ2 + B2

n − C2 = 0, n = 0, 1, 2, · · · ,

where

A2
n − 2Bn =

d2
2n

4

l4
+

(
d1n2

l2
−
β(k − 1− 2β)

k(1 + β)

)2

,

B2
n − C2 =

d2
2n

4

l4

(
d1n2

l2
−
β(k − 1− 2β)

k(1 + β)

)2

−
r2(k − β)2

k2(β + 1)2
.
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Delayed Diffusive Leslie-Gower Predator-Prey Model

[Chen-Shi-Wei, 2012, IJBC]

∂u(t, x)

∂t
− d1∆u(t, x) = u(t, x)(p − αu(t, x)− βv(t − τ1, x)), x ∈ Ω, t > 0,

∂v(t, x)

∂t
− d2∆v(t, x) = µv(t, x)

(
1−

v(t, x)

u(t − τ2, x)

)
, x ∈ Ω, t > 0,

∂u(t, x)

∂ν
=
∂v(t, x)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x , t) = u0(x , t) ≥ 0, x ∈ Ω, t ∈ [−τ2, 0].

v(x , t) = v0(x , t) ≥ 0, x ∈ Ω, t ∈ [−τ1, 0].

Constant steady state: (u∗, v∗) =

(
p

α+ β
,

p

α+ β

)
.

Main result: (a) If α > β, then (u∗, v∗) is globally asymptotically stable for any
τ1 ≥ 0, τ2 ≥ 0. (proved with upper-lower solution method)
(b) If α < β, then there exists τ∗ > 0 such that (u∗, v∗) is stable for τ1 + τ2 < τ∗, and
it is unstable for τ1 + τ2 > τ∗.

[Du-Hsu, 2004, JDE] When τ1 = τ2 = 0, if α > s0β, for some s0 ∈ (1/5, 1/4), then
(u∗, v∗) is globally asymptotically stable. (proved with Lyapunov function, and it is
conjectured that the global stability holds for all α, β > 0.)
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Bifurcation diagram of Leslie-Gower system

There is a parameter region in which the global stability persists for all delay τ > 0
(absolutely stable). The other region conditionally stability holds.

unstable

Hopf bifurcation

locally stable

tau_*(beta)

globally stable

0

5
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25

30

tau
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Figure: Bifurcation Diagram with parameters β and τ = τ1 + τ2. Here
d1 = 0.1, d2 = 0.2, α = 10, µ = 1, p = 2.
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Calculation

The characteristic equation

∆n(λ, τ) = λ2 + Anλ+ Bn + Ce−λτ = 0, n = 0, 1, 2, · · · ,

where

An =
α

α+ β
p + µ+ (d1 + d2)λn, Bn =

(
λnd1 +

α

α+ β
p

)
(λnd2 + µ) ,

C = µ
β

α+ β
p, and τ = τ1 + τ2.

If ±iσ(σ > 0) is a pair of roots of the characteristic equation, then we have{
σ2 − Bn = C cosστ,

σAn = C sinστ,
n = 0, 1, 2, · · · ,

which lead to

σ4 + (A2
n − 2Bn)σ2 + B2

n − C2 = 0, n = 0, 1, 2, · · · ,

where

A2
n − 2Bn =

(
d1λn +

α

α+ β
p

)2

+ (d2λn + µ)2,

B2
n − C2 =

(
λnd1 +

α

α+ β
p

)2

(λnd2 + µ)2 −
(
µ

β

α+ β
p

)2

.
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Diffusive Hutchinson Model

no-flux boundary condition:

ut = d∆u + ru(1− u(t − τ)), x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω.

Same as non-spatial case: When τ <
π

2r
, u = K is locally stable;

When τ >
π

2r
, u = K is unstable, and τ = π/(2r) is a Hopf bifurcation point.

(Global stability of u = K is only known when τ is sufficiently small)
[Yoshida, 1982, Hiroshima-MJ], [Memory, 1989, SIAM-JMA], [Friesecke, 1993, JDDE]

Scalar delayed reaction-diffusion (zero boundary condition):
ut = d∆u + ru(1− u(t − τ)), x ∈ Ω, u = 0, x ∈ ∂Ω.

assume r > dλ1 but r − dλ1 is small: there is a τ0(r) > 0 satisfying

lim
r→dλ1

(r − dλ1)τ0(r) =
π

2
such that the unique positive steady state ur is locally

stable when τ < τ0(r), and it is unstable when τ > τ0(r). Again τ = τ0(r) is a Hopf
bifurcation point.
[Green-Stech, 1981, book chap], [Busenberg-Huang, 1996, JDE],
[Su-Wei-Shi, 2009, JDE] more general case [Yan-Li, 2010, Nonlinearity]
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, u = K is unstable, and τ = π/(2r) is a Hopf bifurcation point.

(Global stability of u = K is only known when τ is sufficiently small)
[Yoshida, 1982, Hiroshima-MJ], [Memory, 1989, SIAM-JMA], [Friesecke, 1993, JDDE]

Scalar delayed reaction-diffusion (zero boundary condition):
ut = d∆u + ru(1− u(t − τ)), x ∈ Ω, u = 0, x ∈ ∂Ω.

assume r > dλ1 but r − dλ1 is small: there is a τ0(r) > 0 satisfying

lim
r→dλ1

(r − dλ1)τ0(r) =
π

2
such that the unique positive steady state ur is locally

stable when τ < τ0(r), and it is unstable when τ > τ0(r). Again τ = τ0(r) is a Hopf
bifurcation point.
[Green-Stech, 1981, book chap], [Busenberg-Huang, 1996, JDE],
[Su-Wei-Shi, 2009, JDE] more general case [Yan-Li, 2010, Nonlinearity]
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Diffusive Hutchinson Model with Partial Delay

Assume that a, b ≥ 0 and a + b = 1
no-flux boundary condition (and also non-spatial model):

ut = d∆u + ru(1− au − bu(t − τ)), x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω.

When a ≥ b, then u = 1 is globally stable for any τ ≥ 0;

When a < b, There exists τ0(r) =
1

r
√
b2 − a2

arccos
(
−

a

b

)
such that if τ < τ0(r),

u = 1 is locally stable, and if τ > τ0(r), u = 1 is unstable. τ = τ0(r) is a Hopf
bifurcation point.
[Yamada, 1982, JMAA], [Kuang-Smith, 1993, J-Aust-MS], [Pao, 1996, JMAA]

zero boundary condition:
ut = d∆u + ru(1− au − bu(t − τ)), x ∈ Ω, u = 0, x ∈ ∂Ω.
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a

b
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state ur is locally stable when τ < τ0(r), and it is unstable when τ > τ0(r). Again
τ = τ0(r) is a Hopf bifurcation point.
[Pao, 1996, JMAA], [Huang, 1998, JDE],
[Su-Wei-Shi, 2012, JDDE] global continuation of periodic orbits
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Global Bifurcation

[Su-Wei-Shi, 2012, JDDE]
ut = duxx + ru(1− au − bu(t − τ)), x ∈ (0, π), u(0) = u(π) = 0.
assume a < b, r > d but r − d is small
There exists a unique positive steady state ur ≈ (r − d) sin x .

1 There exists infinitely many Hopf bifurcation points τ = τn (n = 0, 1, 2, · · · )
such that τn+1 > τn so that periodic orbits bifurcate from steady state ur .

2 The connected component Cn of the set of nontrivial periodic orbits bifurcating
from τ = τn is unbounded so that

sup

{
max
t∈R

|z(t)|+ |τ |+ ω + ω−1 : (z, τ, ω) ∈ Cn

}
=∞,

where z(t) is the orbit and 2π/ω is the period.

3 If (z, τ, ω) ∈ Cn, then 1/(n + 1) < ω < 1/n if n ≥ 1, and ω > 1 if n = 0.

4 For n 6= m, Cn
⋂

Cm = ∅; the projection of Cn to τ component contains (τn,∞).

[Wu, 1996, book], [Wu, 1998, Tran-AMS]
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Diffusive Hutchinson Model with nonlocal effect

zero boundary condition:

ut = d∆u + λu

(
1−

∫
Ω
K(x , y)u(y , t − τ)dy

)
, x ∈ Ω, u = 0, x ∈ ∂Ω.

assume λ > dλ1 but λ− dλ1 is small: there exists a τ0(λ) > 0 such that uλ is locally
asymptotically stable when τ ∈ [0, τ0(λ)) and it is unstable when τ > τ0(λ). And
τ = τ0(λ) is a Hopf bifurcation point.

ut = d∆u + λu

(
1−

∫ π

0
u(y , t − τ)dy

)
, x ∈ (0, π), u = 0, x = 0, π.

assume λ > dλ1: there exists a τ0(λ) > 0 such that uλ is locally asymptotically stable
when τ ∈ [0, τ0(λ)) and it is unstable when τ > τ0(λ). And τ = τ0(λ) is a Hopf
bifurcation point.
[Chen-Shi, 2012, JDE]
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Simulation (1)

ut = d∆u + λu

(
1−

∫ π

0
K(x , y)u(y , t − τ)dy

)
, x ∈ (0, π), u = 0, x = 0, π.

Figure: Spatially homogeneous kernel K (x , y) = 1. (Left): τ = 1;
(Right): τ = 1.6.
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Simulation (2)

ut = d∆u + λu

(
1−

∫ π

0
K(x , y)u(y , t − τ)dy

)
, x ∈ (0, π), u = 0, x = 0, π.

Figure: Spatially nonhomogeneous kernel K (x , y) =
|x − y |
π

. (Left):

τ = 1; (Right): τ = 1.6.
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Setting

[Su-Wei-Shi, 2009, JDE]

∂u(x , t)

∂t
= d

∂u2(x , t)

∂x2
+ λu(x , t)f (u(x , t − τ)), x ∈ (0, l), t > 0,

u(0, t) = u(l , t) = 0, t ≥ 0,

(3)

where d > 0 is the diffusion coefficient, τ > 0 is the time delay, and λ > 0 is a scaling
constant; the spatial domain is the interval (0, l), and Dirichlet boundary condition is
imposed so the exterior environment is hostile. We consider Eq. (3) with the following
initial value:

u(x , s) = η(x , s), x ∈ [0, l ], s ∈ [−τ, 0], (4)

where η ∈ C def
= C([−τ, 0],Y ) and Y = L2

(
(0, l)

)
.

The following assumptions are always satisfied:

(A1) There exists δ > 0 such that f is a C4 function on [0, δ];

(A2) f (0) = 1, and f ′(u) < 0 for u ∈ [0, δ].
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Steady State

d2u(x)

dx2
+ λu(x)f (u(x)) = 0, x ∈ (0, l),

u(0) = u(l) = 0.

(5)

It is well known that Y = N (dD2 + λ∗)⊕R(dD2 + λ∗), where

D2 =
∂2

∂x2
, N (dD2 + λ∗) = Span

{
sin(

π

l
(·))
}

and

R(dD2 + λ∗) =

{
y ∈ Y : 〈sin(

π

l
(·)), y〉 =

∫ l

0
sin(

π

l
x)y(x)dx = 0

}
.

Theorem 1 There exist λ∗ > λ∗ and a continuously differentiable mapping
λ 7→ (ξλ, αλ) from [λ∗, λ∗] to (X ∩R(dD2 + λ∗))× R+ such that Eq.(3) has a
positive steady state solution given by

uλ = αλ(λ− λ∗)[sin(
π

l
(·)) + (λ− λ∗)ξλ], λ ∈ [λ∗, λ

∗]. (6)

Moreover, αλ∗ =
−
∫ l

0 sin2(π
l
x)dx

λ∗f ′(0)
∫ l

0 sin3(π
l
x)dx

and ξλ∗ ∈ X is the unique solution of the

equation (dD2 + λ∗)ξ+ [1 + λ∗αλ∗ f
′(0) sin(

π

l
(·))] sin(

π

l
(·)) = 0, 〈sin(

π

l
(·)), ξ〉 = 0.
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Linearization

∂v(x , t)

∂t
= d

∂2v(x , t)

∂x2
+ λf (uλ)v(x , t) + λuλf

′(uλ)v(x , t − τ), t > 0,

v(0, t) = v(l , t) = 0, t ≥ 0,

v(x , t) = η(x , t), (x , t) ∈ [0, l ]× [−τ, 0],

(7)

where η ∈ C. We introduce the operator A(λ) : D(A(λ))→ YC defined by
A(λ) = dD2 + λf (uλ), with domain

D(A(λ)) = {y ∈ YC : ẏ , ÿ ∈ YC, y(0) = y(l) = 0} = XC,

and set v(t) = v(·, t), η(t) = η(·, t). Then Eq.(7) can be rewritten as

dv(t)

dt
= A(λ)v(t) + λuλf

′(uλ)v(t − τ), t > 0,

v(t) = η(t), t ∈ [−τ, 0], η ∈ C,
(8)

with A(λ) an infinitesimal generator of a compact C0-semigroup. The semigroup
induced by the solutions of Eq.(8) has the infinitesimal generator Aτ (λ) given by

Aτ (λ)φ = φ̇,

D(Aτ (λ)) = {φ ∈ CC ∩ C1
C : φ(0) ∈ XC, φ̇(0) = A(λ)φ(0) + λuλf

′(uλ)φ(−τ)},

where C1
C = C1([−τ, 0],YC).
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Spectral set

The spectral set σ(Aτ (λ)) =
{
µ ∈ C : ∆(λ, µ, τ)y = 0, for some y ∈ XC \ {0}

}
, and

∆(λ, µ, τ) = A(λ) + λuλf
′(uλ)e−µτ − µ.

The eigenvalues of Aτ (λ) depend continuously on τ . It is clear that Aτ (λ) has an
imaginary eigenvalue µ = iν (ν 6= 0) for some τ > 0 if and only if

[A(λ) + λuλf
′(uλ)e−iθ − iν]y = 0, y(6= 0) ∈ XC (9)

is solvable for some value of ν > 0, θ ∈ [0, 2π). One can see that if we find a pair of
(ν, θ) such that Eq.(9) has a solution y , then

∆(λ, iν, τn)y = 0, τn =
θ + 2nπ

ν
, n = 0, 1, 2, · · · .
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Decomposition

Suppose that (ν, θ, y) is a solution of Eq.(9) with y( 6= 0) ∈ XC. Then represented as

y = β sin(
π

l
(·)) + (λ− λ∗)z, 〈sin(

π

l
(·)), z〉 = 0, β ≥ 0,

‖y‖2
YC

= β2‖ sin(
π

l
(·))‖2

YC
+ (λ− λ∗)2‖z‖2

YC
= ‖ sin(

π

l
(·))‖2

YC
.

(10)

Substituting these into Eq.(9), we obtain the equivalent system to Eq.(9):

g1(z, β, h, θ, λ)
def
= (dD2 + λ∗)z + [β sin(

π

l
(·)) + (λ− λ∗)z]

·
[
1 + λm1(ξλ, αλ, λ) + λαλf

′(uλ)e−iθ[sin(
π

l
(·)) + (λ− λ∗)ξλ]− ih

]
= 0,

g2(z)
def
=Re〈sin(

π

l
(·)), z〉 = 0, g3(z)

def
= Im〈sin(

π

l
(·)), z〉 = 0,

g4(z, β, λ)
def
= (β2 − 1)‖ sin(

π

l
(·))‖2

YC
+ (λ− λ∗)2‖z‖2

YC
= 0.

We define G : XC × R3 × R 7→ YC × R3 by G = (g1, g2, g3, g4) and note

zλ∗ = (1− i)ξλ∗ , βλ∗ = 1, hλ∗ = 1, θλ∗ =
π

2
, (11)

with ξλ∗ defined as in Theorem 1. An easy calculation shows that

G(zλ∗ , βλ∗ , hλ∗ , θλ∗ , λ∗) = 0.
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Solving eigenvalue problem

Theorem 2. There exists a continuously differentiable mapping λ 7→ (zλ, βλ, hλ, θλ)
from [λ∗, λ∗] to XC × R3 such that G(zλ, βλ, hλ, θλ, λ) = 0. Moreover, if
λ ∈ (λ∗, λ∗), and (zλ, βλ, hλ, θλ, λ) solves the equation G = 0 with hλ > 0, and
θλ ∈ [0, 2π), then (zλ, βλ, hλ, θλ) = (zλ, βλ, hλ, θλ).

Proof. Using Implicit function theorem.

Corollary. If 0 < λ∗ − λ∗ � 1, then for each λ ∈ (λ∗, λ∗), the eigenvalue problem

∆(λ, iν, τ)y = 0, ν ≥ 0, τ > 0, y( 6= 0) ∈ XC

has a solution, or equivalently, iν ∈ σ(Aτ (λ)) if and only if

ν = νλ = (λ− λ∗)hλ, τ = τn =
θλ + 2nπ

νλ
, n = 0, 1, 2, · · · (12)

and
y = ryλ, yλ = βλ sin(

π

l
(·)) + (λ− λ∗)zλ,

where r is a nonzero constant, and zλ, βλ, hλ, θλ are defined as in Theorem 2.
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Stability of steady state solution

1 If 0 < λ∗ − λ∗ � 1 and τ ≥ 0, then 0 is not an eigenvalue of Aτ (λ) for
λ ∈ (λ∗, λ∗].

2 If 0 < λ∗ − λ∗ � 1 and τ = 0, then all eigenvalues of Aτ (λ) have negative real
parts for λ ∈ (λ∗, λ∗].

3 If 0 < λ∗ − λ∗ � 1, then for each fixed λ ∈ (λ∗, λ∗], µ = iνλ is a simple
eigenvalue of Aτn for n = 0, 1, 2, · · · .

4 Since µ = iν is a simple eigenvalue of Aτn , by using the implicit function
theorem it is not difficult to show that there are a neighborhood
On × Dn × Hn ⊂ R× C× XC of (τn, iνλ, yλ) and a continuously differential
function (µ, y) : On → Dn × Hn such that for each τ ∈ On, the only eigenvalue
of Aτ (λ) in Dn is µ(τ), and

µ(τn) = iνλ, y(τn) = yλ,

∆(λ, µ(τ), τ) = [A(λ) + λuλf
′(uλ)e−µ(τ)τ − µ(τ)]y(τ) = 0, τ ∈ On. (13)

5 If 0 < λ∗ − λ∗ � 1, then for each λ ∈ (λ∗, λ∗],

Re
dµ(τn)

dτ
> 0, n = 0, 1, 2, · · · .
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Hopf bifurcation

1 If 0 < λ∗ − λ∗ � 1, then for each fixed λ ∈ (λ∗, λ∗], the infinitesimal generator
Aτ (λ) has exactly 2(n + 1) eigenvalues with positive real part when
τ ∈ (τn, τλn+1

], n = 0, 1, 2, · · · .
2 If 0 < λ∗ − λ∗ � 1, then for each fixed λ ∈ (λ∗, λ∗], the positive steady state

solution uλ of Eq.(3) is asymptotically stable when τ ∈ [0, τ0) and is unstable
when τ ∈ (τ0,∞).

Theorem 3. Suppose that f (u) satisfies (A1) and (A2), and define λ∗ = d(π/l)2.
Then there is a λ∗ > λ∗ with 0 < λ∗ − λ∗ � 1, and for each fixed λ ∈ (λ∗, λ∗], there
exist a sequence {τn}∞n=0 satisfying 0 < τ0 < τ1 < · · · < τn < · · · , such that Eq.(3)
undergoes a Hopf bifurcation at (τ, u) = (τn, uλ) for n = 0, 1, 2, · · · . More precisely,
there is a family of periodic solutions in form of (τn(a), un(x , t; a)) with period Tn(a)
for a ∈ (0, a1) with a1 > 0, such that

τn(a) =
θλ + 2nπ

νλ
+ a2k1

n (λ) + o(a2), Tn(a) =
2π

νλ

(
1 + a2k2

n (λ) + o(a2)
)
,

un(x , t; a) = uλ(x) +
a

2

(
yλ(x)e iνλt + yλ(x)e−iνλt

)
+ o(a),

(14)

where

k1
n (λ) =

dγ∗(0)

da
:= k1(n, λ)(λ− λ∗)−3 + o((λ− λ∗)−3),

k2
n (λ) =

dδ∗(0)

da
:= k2(n, λ)(λ− λ∗)−2 + o((λ− λ∗)−2),

(15)
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Hopf bifurcation (cont.)

k1(n, λ) =−
Re

∫ l

0
f ′(uλ)S̄nm

1
λ sin(

π

l
x)yλȳλ(e iθλ + e−2iθλ )dx

hλ

∣∣∣∣ ∫ l

0
y2
λdx

∣∣∣∣Re

{
ie−i(θλ+ρλ)

∫ l

0

uλf
′(uλ)y2

λ

λ− λ∗
dx

}

=−
λ2
∗
[
f ′(0)

]2
[1− 3(

π

2
+ 2nπ)]

( ∫ l

0
sin3(

π

l
x)dx

)2

20
( ∫ l

0
sin2(

π

l
x)dx

)2
+ o(λ− λ∗),
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Hopf bifurcation (cont.)

k2(n, λ) =

Re

∫ l

0
f ′(uλ)S̄nm

1
λ sin(

π

l
x)yλȳλ(e iθλ + e−2iθλ )dx

h2
λ

∣∣Sn∣∣2∣∣∣∣ ∫ l

0
y2
λdx

∣∣∣∣Re

{
ie−i(θλ+ρλ)

∫ l

0

uλf
′(uλ)y2

λ

λ− λ∗
dx

} · (λhλ∣∣∣∣ ∫ l

0
y2
λdx

∣∣∣∣
· Im

{
ie−i(θλ+ρλ)

∫ l

0

uλf
′(uλ)y2

λ

λ− λ∗
dx

}
+ λ2(θλ + 2nπ)

∣∣∣∣ ∫ l

0

uλf
′(uλ)y2

λ

λ− λ∗
dx

∣∣∣∣2)
+

1

hλ
∣∣Sn∣∣2 Im

∫ l

0
λf ′(uλ)S̄nm

1
λyλȳλ(e iθλ + e−2iθλ )dx

=

λ2
∗ [f ′(0)]2 [3(

π

2
+ 2nπ)2 − 2(

π

2
+ 2nπ)− 3]

( ∫ l

0
sin3(

π

l
x)dx

)2

20[1 + (
π

2
+ 2nπ)]2

( ∫ l

0
sin2(

π

l
x)dx

)2
+ o(λ− λ∗),

and (θλ, νλ, yλ) is the associated eigen-triple. In particular, k1(n, λ) > 0 and
k2(n, λ) > 0 hence the Hopf bifurcation at (τn, uλ) is forward with increasing period.
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Nonlocal model

Delayed Fisher equation:
∂u(x , t)

∂t
= d∆u(x , t) + λu(x , t) (1− u(x , t − τ)) , x ∈ Ω, t > 0,

u(x , t) = 0, x ∈ ∂Ω, t > 0.
(16)

It has been pointed out by several authors that, in a reaction-diffusion model with
time-delay effect, the effects of diffusion and time delays are not independent of each
other, and the individuals which were at location x at previous times may not be at
the same point in space presently. Hence the localized density-dependent growth rate
per capita 1− u(x , t − τ) in (16) is not realistic. it is more reasonable to consider the
diffusive logistic population model with nonlocal delay effect as follows:
∂u(x , t)

∂t
= d∆u(x , t) + λu(x , t)

(
1−

∫
Ω
K(x , y)u(y , t − τ)dy

)
, x ∈ Ω, t > 0,

u(x , t) = 0, x ∈ ∂Ω, t > 0,

(17)
where u(x , t) is the population density at time t and location x , d > 0 is the diffusion
coefficient, τ > 0 is the time delay representing the maturation time, and λ > 0 is a
scaling constant; Ω is a connected bounded open domain in Rn (n ≥ 1), with a
smooth boundary ∂Ω, and Dirichlet boundary condition is imposed so the exterior
environment is hostile; K(x , y) is a kernel function which describes the dispersal
behavior of the population. The nonlocal growth rate per capita in (17) incorporates
the possible dispersal of the individuals during the maturation period, hence it is a
more realistic model than (16).
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Hopf bifurcation

Theorem 4. For λ ∈ (λ∗, λ∗], the positive equilibrium solution uλ of Eq.(17) is locally
asymptotically stable when τ ∈ [0, τ0) and is unstable when τ ∈ (τ0,∞). Moreover at
τ = τn, (n = 0, 1, 2, · · · ), a Hopf bifurcation occurs so that a branch of spatially
nonhomogeneous periodic orbits of Eq. (17) emerges from (τn, uλ).
More precisely, there exists ε0 > 0 and continuously differentiable function
[−ε0, ε0] 7→ (τn(ε),Tn(ε), un(ε, x , t)) ∈ R× R× X satisfying τn(0) = τn,
Tn(0) = 2π/νλ, and un(ε, x , t) is a Tn(ε)-periodic solution of Eq.(17) such that
un = uλ + εvn(ε, x , t) where vn satisfies vn(0, x , t) is a 2π/νλ-periodic solution of (7).
Moreover there exists δ > 0 such that if Eq.(17) has a nonconstant periodic solution
u(x , t) of period T for some τ > 0 with

|τ − τn| < δ,

∣∣∣∣T − 2π

νλ

∣∣∣∣ < δ, max
t∈R,x∈Ω

|u(x , t)− uλ(x)| < δ,

then τ = τn(ε) and u(x , t) = un(ε, x , t + θ) for some |ε| < ε0 and some θ ∈ R.

[Wu, 1995, book]
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Homogenous kernel

When K(x , y) ≡ 1, n = 1 and Ω = (0, L) where L > 0, then the equation becomes


∂u(x , t)

∂t
=
∂2u(x , t)

∂x2
+ λu(x , t)

(
1−

∫ π

0
u(y , t − τ)dy

)
, x ∈ (0, π), t > 0,

u(x , t) = 0, x = 0, π, t > 0.

(18)
We can easily verify that Eq. (18) has a unique positive equilibrium solution

uλ(x) =
λ− 1

2λ
sin x for any λ > 1 (here λ∗ = 1). Linearizing Eq. (18) at uλ, we have

that
∂v(x , t)

∂t
=
∂2v(x , t)

∂x2
+ v −

λ− 1

2
sin x

∫ π

0
v(y , t − τ)dy , x ∈ (0, π), t > 0,

v(x , t) = 0, x = 0, π, t > 0.

(19)
Note that µ is an eigenvalue of Aτ (λ) if and only if µ is an eigenvalue of the following
nonlocal elliptic eigenvalue problem:∆(λ, µ, τ)ψ := ψ′′ + ψ −

λ− 1

2
e−µτ sin x

∫ π

0
ψ(y)dy − µψ = 0, x ∈ (0, π),

ψ(0) = ψ(π) = 0.

(20)
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Eigenvalue probelm

Lemma. Suppose that λ > 1 and τ ≥ 0. Then µ ∈ C is an eigenvalue of the problem
(20) if and only if one of the following is satisfied:

1 µ = −n2 + 1 for n = 2, 3, 4, · · · ; or

2 µ satisfies
(λ− 1)e−µτ + µ = 0. (21)

Proof: Substituting the Fourier series ψ =
∞∑
n=1

cn sin nx into Eq. (20), we have:

∞∑
n=2

cn
(
−n2 + 1− µ

)
sin nx −

[
(λ− 1)

∞∑
n=0

c2n+1

2n + 1
e−µτ + µc1

]
sin x = 0. (22)

Case 1: Suppose that µ ∈ C is an eigenvalue of (20), and µ 6= −n2 + 1 for each of
n = 2, 3, 4, · · · , then (22) implies each cn = 0 for n ≥ 2, and if c1 6= 0, then (21) is
satisfied, and µ is an eigenvalue with an eigenfunction φ1(x) = sin x .
Case 2: If (21) is not satisfied and for some m = 2, 3, 4, · · · , µ = −m2 + 1, then
cn = 0 for n ≥ 2 and n 6= m. If m is even, then c1 = 0 as well, hence µ = −m2 + 1 is
an eigenvalue with an eigenfunction φm(x) = sinmx ; if m is odd, then µ = −m2 + 1 is
an eigenvalue with an eigenfunction in form φm(x) = sin x + cm sinmx , where cm
satisfies

(λ− 1)
(

1 +
cm

m

)
e(−m2+1)τ −m2 + 1 = 0.
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Distribution of eigenvalues

0 0.5 1 1.5 2 2.5 3
−5

−4

−3

−2

−1

0

1

τ

R
e
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τ
*

Figure: Relation between Re(µ) and τ for Eq. (21). Here λ = 2.
µ = −3 is a fixed real-valued eigenvalue; on the left side of τ = τ∗ is the
curve of real-valued eigenvalues µ satisfying (λ− 1)e−µτ + µ = 0; and on
the right side of τ = τ∗ are the curves of real part αn of complex-valued
eigenvalues αn ± iβn. The curve α0(τ) connects with the curve of real
eigenvalues at τ = τ∗, and at τ = π/2, α0(τ) = 0 which gives rise of the
first Hopf bifurcation point.
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Hopf bifurcation

1 The eigenspace of (20) may not be one-dimensional. When µ = −n2 + 1 is also
a root of (21), the eigenspace is two-dimensional. However as shown in
[Davidson-Doods, 2006, AA], usually the eigenspace of such nonlocal problem is
at most two-dimensional.

2 The eigenvalue problem (20) with τ = 0 always has a principal eigenvalue µ0

satisfying (21) with a positive eigenfunction sin x . But µ0 may not be the
largest eigenvalue of (20). For example when τ = 0 and λ < 4, the maximum
eigenvalue of (20) is 1− λ which is also the principal eigenvalue; but when
τ = 0 and λ ≥ 4, then the maximum eigenvalue is −3 with the corresponding
eigenfunction sin 2x , and hence the maximum eigenvalue is not the principal
eigenvalue.

Theorem 5. For each λ > 1, there exist

τn(λ) =
(4n + 1)π

2(λ− 1)
, n = 0, 1, 2, · · · , (23)

such that when τ = τn(λ), n = 0, 1, 2 · · · , Aτ (λ) has a pair of simple purely imaginary
roots ±iνλ = ±i(λ− 1). Consider the nonlocal problem (18). For each λ > 1 and
n ∈ N ∪ {0}, there exists a τn(λ) defined as in (23) such that a Hopf bifurcation

occurs for Eq. (18) at the unique positive equilibrium solution uλ =
λ− 1

2λ
sin x when

τ = τn(λ). Moreover, uλ is locally asymptotically stable when 0 ≤ τ < τ0(λ), and it is
unstable when τ > τ0(λ).
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An observation


∂u(x , t)

∂t
= d∆u(x , t) + λu(x , t)

(
1−

∫
Ω
K(x , y)u(y , t − τ)dy

)
, x ∈ Ω, t > 0,

u(x , t) = 0, x ∈ ∂Ω, t > 0,

(24)
suppose that a solution u(x , t) of Eq. (24) is in a separable form

u(x , t) =
λ− 1

2λ
sin x · w(t). (25)

Here we recall that uλ(x) =
λ− 1

2λ
sin x is the unique positive equilibrium of Eq. (24)

for λ > 1. Then it is easy to verify that w(t) satisfies the well-known (non-spatial)
Hutchinson equation

dw

dt
= (λ− 1)w(t)(1− w(t − τ)). (26)

It is also well-known that the Hopf bifurcation points of Eq. (26) are also given by
(23), hence all the bifurcating periodic orbits obtained in Theorem 5 are indeed in
separable form (25). This shows that the dynamics of Eq. (26) is embedded in the
dynamics of Eq. (24) if the initial value is also in separable form (25). This is
interesting for a Dirichlet boundary value problem, while it is common for Neumann
(no-flux) boundary value problem. It would be interesting to know the stability of
periodic solution with such separable form for all λ > 1, and whether a
symmetry-breaking bifurcation can occur so that non-separable periodic orbits can
arise.
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Spatiotemporal Hutchinson model

[Zuo-Song, 2015, Non. Dyn.]{
ut = d∆u + F (λ, u, g ∗ u), x ∈ (0, 1), t ≥ 0,

ux = 0, x = 0, 1, t ≥ 0,

Here (g ∗ u)(x , t) =

∫ t

−∞
g(t − s)u(x , s)ds.

[Zuo-Song, 2015, JMAA]{
ut = d∆u + F (λ, u, g ∗ ∗u), x ∈ (0, 1), t ≥ 0,

ux = 0, x = 0, 1, t ≥ 0,

Here (g ∗ ∗u)(x , t) =

∫ t

−∞

∫
Ω
G(x , y , t − s)g(t − s)u(y , s)dyds.

[Guo, 2015, JDE] there is Hopf bifurcation for u ≈ εφ1{
ut = d∆u + λuF (g ∗ ∗u), x ∈ Ω, t ≥ 0,

u = 0, x ∈ ∂Ω, t ≥ 0,

Here (g ∗ ∗u)(x , t) =

∫ t

−∞

∫
Ω
G(x , y)g(t − s)u(y , s)dyds.
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Spatiotemporal Hutchinson model

[Chen-Yu, 2016] there is no Hopf bifurcation for u ≈ εφ1{
ut = d∆u + λuF (g ∗ ∗u), x ∈ Ω, t ≥ 0,

u = 0, x ∈ ∂Ω, t ≥ 0,

Here (g ∗ ∗u)(x , t) =

∫ t

−∞

∫
Ω
G(x , y , s)g(t − s)u(y , s)dyds, and g(t) =

tm−1e−t/τ

Γ(m)τm

or g(t) = δ(t − τ) where τ,m > 0, and G(x , y , s) is the diffusion kernel.

Summary for spatiotemporal Hutchinson model:{
ut = d∆u + λuF (g ∗ ∗u), x ∈ Ω, t ≥ 0,

u = 0, x ∈ ∂Ω, t ≥ 0,

Here (g ∗ ∗u)(x , t) =

∫ t

−∞

∫
Ω
G(x , y , s)g(t − s)u(y , s)dyds.

(i) G(x , y , s) = δ(x − y) and g(t) = δ(t − τ): Hopf [Busenberg-Huang, 1996]
[Su-Wei-Shi, 2009]
(ii) G(x , y , s) = K(x , y) and g(t) = δ(t − τ): Hopf [Chen-Shi, 2012]
(iii) G(x , y , s) = K(x , y) and g(t) = g(t): Hopf [Guo, 2015]
(iv) G(x , y , s) is diffusion kernel and g(t) = δ(t − τ): “no Hopf” [Chen-Yu, 2016]
(iv) G(x , y , s) is diffusion kernel and g(t) is Gamma: “no Hopf” [Chen-Yu, 2016]



ODE Background One trans-term Logistic equation Proof: local Proof: nonlocal Conversion Steady States Examples Animal Movement Diffusion Taxis Delayed Taxis Two Delays Distributed Delay Conclusions

Diffusive Nicholson’s blowfly model

[So-Yang, 1998, JDE]{
ut = d∆u − τu + βτu(t − 1)e−u(t−1), x ∈ Ω, t ≥ 0,

u = 0, x ∈ ∂Ω, t ≥ 0.

1 When (β − 1)τ < dλ1, then u = 0 is globally asymptotically stable.

2 When (β − 1)τ > dλ1, there is a unique positive equilibrium solution.

3 When 1 < β < e2, the positive equilibrium solution is globally asymptotically
stable.

4 When β > e2, then the positive equilibrium solution is stable if 0 < τ < τ0, and
it is unstable when τ > τ0 (a Hopf bifurcation occurs at τ = τ0).

[So-Wu-Yang, 2000, AMC], [Su-Wei-Shi, 2010, NARW], [Guo-Ma, JNS, 2016]

Neumann boundary condition:
[Yang-So, 1998, DCDS-Proc] [Yi-Zou, 2008, JDE]

Traveling wave:
[So-Zou, 2001, AMC]
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Spatiotemporal Nicholson’s blowfly model

[Gourley-Ruan, 2000, PRSE]{
ut = d∆u − τu + βτF (g ∗ u), x ∈ Ω, t ≥ 0,

u = 0, x ∈ ∂Ω, t ≥ 0.

Here (g ∗ u)(x , t) =

∫ t

−∞
g(t − s)u(x , s)ds, and F (v) = ve−v .

[So-Wu-Zou, 2001, PRSL] traveling wave

ut = d∆u − dmu + βG ∗ F (u), x ∈ R, t ≥ 0.

Here G ∗ v =

∫
R
G(x − y)v(y)dy , G(y) =

1
√

4πα
e−y2/(4α) and F (v) = ve−v .

[Li-Ruan-Wang, 2007, JNS] traveling wave

ut = d∆u − τu + βτF (g ∗ ∗u), x ∈ RN , t ≥ 0.

Here (g ∗ ∗u)(x , t) =

∫ t

−∞

∫
RN

G(x , y , s)g(t − s)u(y , s)dyds, and F (v) = ve−v .
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Spatiotemporal Nicholson’s blowfly model

Bounded Domains:

[Zhao, 2009, CAMQ] [Su-Zou, 2014, Nonlinearity] (Neumann BC)
[Guo-Yang-Zou, 2012, CPAA] [Yi-Zou, 2013, JDDE] (Dirichlet BC){

ut = d∆u − dmu + βG ∗ F (u), x ∈ Ω, t ≥ 0.

Bu = 0, x ∈ ∂Ω, t ≥ 0.

Here G ∗ v =

∫
Ω
G(x − y)v(y)dy , and F (v) = ve−v .

Global stability, Hopf bifurcation, Steady state solution.

[Hu-Yuan, 2012, EJAM]

ut = d∆u − τu + βτF (g ∗ ∗u), x ∈ Ω, t ≥ 0.

Here (g ∗ ∗u)(x , t) =

∫ t

−∞

∫
Ω
G(x , y , s)g(t − s)u(y , s)dyds, and F (v) = ve−v .

Global stability, Hopf bifurcation.

Surveys:
[Gourley-So-Wu, 2003, JMS] [Gourley-Wu, 2006, Book-chapter]
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A Unified Model

[Zuo-Shi, 2016, preprint] We consider a general model in form:
ut(x , t) = d∆u(x , t) + F (λ, u(x , t), (g ∗ ∗H(u))(x , t)), x ∈ Ω, t ≥ 0,

u(x , t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x , s) = η(x , s), x ∈ Ω, s ∈ (−∞, 0],

Here

(g ∗ ∗u)(x , t) =

∫ t

−∞

∫
Ω
G(x , y , t − s)g(t − s)u(y , s)dyds,

with G being
(i) the diffusion kernel Γ(x , y , t), (ii) spatial kernel K(x , y), (iii) delta kernel δ(x , y);

and the distribution function being

(i) Gamma distribution g(t) =
tm−1e−t/τ

Γ(m)τm
, (ii) discrete distribution

g(t) =
∑
δ(t − τi ).

Questions: Steady state, Stability, Hopf bifurcation, Traveling wave.
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A Unified Model

[Zuo-Shi, 2016, preprint] We consider a general model in form:
ut(x , t) = d∆u(x , t) + F (λ, u(x , t), (g ∗ ∗H(u))(x , t)), x ∈ Ω, t ≥ 0,

u(x , t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x , s) = η(x , s), x ∈ Ω, s ∈ (−∞, 0],

(27)
Here

(g ∗ ∗u)(x , t) =

∫ t

−∞

∫
Ω
G(x , y , t − s)g(t − s)u(y , s)dyds, (28)

with G being the diffusion kernel

G(x , y , t) =
∞∑
n=1

e−dλntφn(x)φn(y),

where (λn, φn) is the eigen-pair of the eigenvalue problem:

−∆φ(x) = λφ(x), x ∈ Ω, φ(x) = 0, x ∈ ∂Ω,

and the distribution function being one of the following weak or strong kernel: (τ > 0)

gw (t) =
1

τ
e−

t
τ , gs(t) =

t

τ2
e−

t
τ .
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Conversion to a reaction-diffusion model

Proposition 1.

1. If u(x , t) is a solution of (27) with the weak kernel function gw (t) = 1
τ
e−

t
τ , then

(u(x , t), v(x , t)) is the solution of



ut(x , t) = d∆u(x , t) + F (λ, u, v), x ∈ Ω, t > 0,

vt(x , t) = d∆v(x , t) +
1

τ
(H(u(x , t))− v(x , t)), x ∈ Ω, t > 0,

u(x , t) = v(x , t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x , 0) = η(x , 0), x ∈ Ω,

v(x , 0) =
1

τ

∫ 0

−∞

∫
Ω
G(x , y ,−s)e−

s
τ H(η(y , s))dyds, x ∈ Ω.

(29)

2. If (u(x , t), v(x , t)) is a solution of
ut(x , t) = d∆u(x , t) + F (λ, u, v), x ∈ Ω, t ∈ R,

vt(x , t) = d∆v(x , t) +
1

τ
(H(u(x , t))− v(x , t)), x ∈ Ω, t ∈ R,

u(x , t) = v(x , t) = 0, x ∈ ∂Ω, t ∈ R,

(30)

Then u(x , t) satisfies (27) such that η(x , s) = u(x , s), −∞ < s < 0.
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Strong kernel and other cases

1 If u(x , t) is a solution of (27) with the strong kernel function gs(t) = t
τ2 e
− t

τ ,

then (u(x , t), v(x , t),w(x , t)) is the solution of



ut(x , t) = d∆u(x , t) + F (λ, u, v), x ∈ Ω, t > 0,

vt(x , t) = d∆v(x , t) + 1
τ

(w(x , t)− v(x , t)), x ∈ Ω, t > 0,

wt(x , t) = d∆w(x , t) + 1
τ

(H(u(x , t))− w(x , t)), x ∈ Ω, t > 0,

u(x , t) = v(x , t) = w(x , t)0, x ∈ ∂Ω, t > 0,

u(x , 0) = η(x , 0), x ∈ Ω,

v(x , 0) =
∫ 0
−∞

∫
Ω G(x , y ,−s)−s

τ2 e
s
τ H(η(y , s))dyds, x ∈ Ω,

w(x , 0) =
∫ 0
−∞

∫
Ω G(x , y ,−s)−1

τ
e

s
τ H(η(y , s))dyds, x ∈ Ω.

(31)

2 Similar conversion can be made if the bounded domain Ω is replaced by RN

(with G being the diffusion kernel in RN), or the Dirichlet boundary condition is
replaced by Neumann or Robin boundary conditions.

3 There is a one-to-one correspondence between the steady state solutions and
periodic orbits of the spatiotemporal distributed delayed system (27) and the
reaction-diffusion system (with no delay and nonlocal effect) (29). And similar
correspondence of traveling wave for the case of RN .
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Local bifurcation of steady state solutions


d∆u(x) + F (u(x), v(x)) = 0, x ∈ Ω,

d∆v(x) +
1

τ
(H(u(x))− v(x)) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

(32)

Define
a = Fu(0, 0), b = Fv (0, 0), m = Fuu(0, 0), n = Fuv (0, 0), p = Fvv (0, 0),

d∗ =
1

2λ1τ
(aτ − 1 +

√
(aτ + 1)2 + 4bH′(0)), and M =

H′(0)

d∗λ1τ + 1
.

Theorem 2. Suppose that
(A1) F and H are C2 near (0, 0) and 0 respectively, F (0, 0) = 0, and H(0) = 0.
(A2) a + H′(0)b > 0 and a + Mb 6= 0.
Then d = d∗ is a unique bifurcation value of the system (32), where positive solutions
bifurcate from the line of trivial solutions Γ0 = {(d , 0, 0), d > 0}. Furthermore, if
(m + 2nM + pM2)(a + bM) > 0 (or < 0), then there exists δ > 0 such that all
positive solutions of (32) lie on a smooth curve
Γ = {(d , ud (x), vd (x)) : d ∈ (d∗ − δ, d∗) (or (d∗, d∗ − δ))}, where(

ud (x)
vd (x)

)
= kd (d − d∗)

((
1
M

)
φ1(x) + o(d − d∗)

)
, (33)

where kd∗ =
2λ1

∫
Ω φ

2
1(x)dx

(m + 2nM + pM2)
∫

Ω φ
3
1(x)dx

.
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Stability

Theorem 3. Suppose that the conditions in Theorem 2 are satisfied, and
(m + 2nM + pM2)(a + bM) > 0. Then the positive solution (ud (x), vd (x)) obtained
in Theorem 2 is locally asymptotically stable for d ∈ (d∗ − δ, d∗).

Proof of Theorems 2 and 3: local bifurcation [Crandall-Rabinowitz, 1971, JFA], local
stability [Crandall-Rabinowitz, 1973, ARMA]

Remark.

1 Theorems 2 and 3 are for a fixed τ > 0, hence d∗, δ and (ud , vd ) depend on τ .

2 When b = Fv (0, 0) = 0, then d∗ = a/λ1 which is independent of τ .

3 Theorem 3 implies that when τ > 0 and d ∈ (d∗(τ)− δ(τ), d∗(τ)), there is no
Hopf bifurcation occurring. Notice that (ud , vd ) depends on τ as well.

Question. What happens outside of the narrow region τ > 0 and
d ∈ (d∗(τ)− δ(τ), d∗(τ))?
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Global bifurcation and uniqueness (logistic type)


d∆u(x) + F (u(x), v(x)) = 0, x ∈ Ω,

d∆v(x) +
1

τ
(H(u(x))− v(x)) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

Theorem 4. In additional to (A1), (A2), we assume that a = Fu(0, 0) > 0, and

(B1) There exist a continuous function F1 : R+ → R and a positive constant K > 0
such that F (u, v) ≤ F1(u)u for (u, v) ∈ R+ × R+. And F1 satisfies F1(u∗) = 0
and 0 < F1(u) < K for u ∈ (0, u∗) and F1(u) < 0 for u > u∗.

(B2) H(u) ≤ H′(0)u for u ∈ R+.

Then there exists a connected component Σ1 of the set of positive solutions of (32)
such that Γ ⊆ Σ1, the projection PdΣ1 of Σ1 into the d-component satisfies
PdΣ1 = (0, d0) for some d0 ∈ [d∗,K/λ1), and for every (d , u, v) ∈ Σ1,
||u||∞ + ||v ||∞ ≤ C for some C > 0 independent of d . Moreover if

(B3) Fv (u, v) ≤ 0 for (u, v) ∈ R+ × R+,

and N = 1, then then for τ > 0 and 0 < d < d∗, (32) has a unique positive solution
(u, v).

Example F (u, v) = u(1− au − bv), H(u) = u. [Su-Wei-Shi, 2012, JDDE]
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Global bifurcation (Nicolson’s blowfly type)


d∆u(x) + F (u(x), v(x)) = 0, x ∈ Ω,

d∆v(x) +
1

τ
(H(u(x))− v(x)) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

Theorem 5. In additional to (A1), (A2), (B2), we assume that a = Fu(0, 0) < 0, and

(B4) There exist positive constants K1,K2,K3 such that Fu(0, 0) ≤ −K1,
Fv (0, 0) ≤ K2 and F (u, v) ≤ −K1u + K3.

Then there exists a connected component Σ1 of the set of positive solutions of (32)
such that Γ ⊆ Σ1, the projection PdΣ1 of Σ1 into the d-component satisfies
PdΣ1 = (0, d0) for some d0 ≥ d∗, and for every (d , u, v) ∈ Σ1, ||u||∞ + ||v ||∞ ≤ C
for some C > 0 independent of d .

Example F (u, v) = −au + bue−u , H(u) = u. [So-Yang, 1998, JDE]
F (u, v) = −au + bv , H(u) = ue−u . [Li-Ruan-Wang, 2007, JNS] [Hu-Yuan, 2012,
EJAM]
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Logistic type equation

{
ut = d∆u + u(1− Au − Bg ∗ ∗u), x ∈ Ω, t ≥ 0,

u = 0, x ∈ ∂Ω, t ≥ 0.
(34)

Or equivalently 
ut = d∆u + u(1− Au − Bv), x ∈ Ω, t ∈ R,

vt = d∆v +
1

τ
(u − v), x ∈ Ω, t ∈ R,

u = v = 0, x ∈ ∂Ω, t ∈ R.

Theorem 6. Suppose that A > 0 and B > 0. When τ > 0 and 0 < d < λ−1
1 , Equation

(34) has a positive steady state solution uτ,d , and when τ > 0 and

λ−1
1 − δ(τ) < d < λ−1

1 , uτ,d is locally asymptotically stable. Moreover if N = 1, then
uτ,d is the unique positive steady state solution, and its spectrum contains no
nonnegative real eigenvalues.

Question. Can oscillations occur for some (τ, d) ∈ {τ > 0, 0 < d < λ−1
1 }?

Similar results hold for Nicholson’s blowfly type models.
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How do animals move over time?

Left: Gazelles in Mongolia; Right: Sockeye salmon in Alaska

Above: North America sandhill cranes; Below: Wolf pack in Yellowstone National Park

news.bbc.co.uk/earth/hi/earth_news/newsid_8034000/8034392.stm, www.jasonsching.com/photography/

www.fws.gov/birds/surveys-and-data/webless-migratory-game-birds/sandhill-cranes.php

www.spokesman.com/stories/2012/jan/15/hungry-wolf-pack-rearranges-balance-in/

news.bbc.co.uk/earth/hi/earth_news/newsid_8034000/8034392.stm
www.jasonsching.com/photography/
www.fws.gov/birds/surveys-and-data/webless-migratory-game-birds/sandhill-cranes.php
www.spokesman.com/stories/2012/jan/15/hungry-wolf-pack-rearranges-balance-in/
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Animal movement data

GPS data received by collars on caribou, moose, muskox, and wolves is relayed via
communication satellites to the desks of wildlife biologists. This technology allows
biologists to track these animals in the remote areas of Alaska even during inclement
weather and the dark.

Left: migratory movements of female caribou of the Western Arctic Herd;
Right: wolf pack territories determined by GPS collar data and telemetry data.

eros.usgs.gov/lir/wildlife-monitoring

eros.usgs.gov/lir/wildlife-monitoring
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Animal Movement Patterns

Theoretical point patterns and trajectories of population distributions. (A) Sedentary
ranges, (B) migration, (C) combination from (A) and (B), (D) nomadism type I, (E)
nomadism type II. Boundary boxes indicate conceptual population ranges.
From: T. Muller and W. Fagan, Search and navigation in dynamic environments–from individual behaviors to

population distributions. Oikos, 117, (2008), 654–664.
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Memory-driven movements

[Fagan et.al., 2013, Ecol. Lett.] Spatial memory and animal movement

1 Central place foraging: regular return to central place (cognitive map of central
place)

2 Migration: seasonal movement between two places (cognitive map, genetic
memory, episodic-like memory)

3 Territoriality, home ranging: remaining and bounded in a bounded area
(cognitive map, episodic-like memory) [Moorcroft-Lewis, 2006, book]

4 Predator avoidance: aversion from the area with high predator density (cognitive
map, landscape of fear)

5 Memory-informed search: no typical pattern, in some rare cases systematic
search patterns such as spirals possible (cognitive map, episodic-like memory)

6 and others
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Diffusion

u(x , y , t) is the population density at location (x , y) and time t:

∂u

∂t
(x , y , t) = D

(
∂2u

∂x2
(x , y , t) +

∂2

∂y2
(x , y , t)

)
.

1 Diffusion is the spontaneous spreading of matter (particles or molecules), heat,
momentum, or light.

2 The rate of change w.r.t. time is caused by the the spatial movement, and it
means the probability of moving to a neighboring location is the same for all
directions.

3 Solved in a bounded region Ω with no-flux boundary condition:

u(x , y , t) =
total population

Area(Ω)
+ Ce−kt .

(population tends to average, no spatial pattern)
4 Diffusion is passive and memoryless.
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Turing diffusion-induced stability

Reaction-diffusion system of two chemicals
ut = d1uxx + f (u, v), x ∈ (0, L), t > 0,

vt = d2vxx + g(u, v), x ∈ (0, L), t > 0,

ux (0, t) = ux (L, t) = vx (0, t) = vx (L, t) = 0, t > 0.

Suppose that (x∗, y∗) is a stable equilibrium of the ODE model

{
xt = f (x , y),

yt = g(x , y),
but

(x∗, y∗) is an unstable equilibrium for some choice of d1, d2, then it is likely the system
can have a non-constant equilibrium which is a spatial pattern.

Turing pattern: (left) 3D view (t, x , u(x , t)); (middle) 2D view (t, x), and color is
u(x , t)); (right) 2D view of equilibrium (x , u(x)).
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Keller-Segel Chemotaxis model

Diffusion: random movement of cells
Chemotaxis: directional movement of cells due to attraction/repulsion to chemicals

[Keller-Segel, 1970, JTB]: attractive chemotaxis for the aggregation of bacteria
ut = d1uxx − χ(uvx )x , x ∈ (0, L), t > 0,

vt = d2vxx + αu − βv , x ∈ (0, L), t > 0,

ux (0, t) = ux (L, t) = vx (0, t) = vx (L, t) = 0, t > 0.

u(x , t): concentration of cell, v(x , t): concentration of chemical; d1, d2 > 0
(diffusion coefficients), χ ≥ 0 (strength of the attraction), α > 0 (chemical
generation rate), β > 0 (chemical decay rate).
For large χ > 0, the model produces non-constant equilibrium.

Aggregation of cell: (left) 3D view (t, x , u(x , t)); (middle) 2D view (t, x), and color is
u(x , t)); (right) 2D view of equilibrium (x , u(x)). d1 = d2 = α = 1, χ = 3, β = 0.2.
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Prey-taxis and predator-taxis

[Kareiva-Odell, 1987, Am.Nat.] [Wu-Shi-Wu, 2016, JDE]
For predator-prey models in ecology, in addition to random diffusion of predators, the
spatial movement of predators and preys can be pursuit and evasion between them:
predators pursuing preys and preys escaping from predators. Such movement is not
random but directed: predators move toward the gradient direction of prey distribution
(called “prey-taxis”), and/or preys move opposite to the gradient of predator
distribution (called “predator-taxis”).

{
ut = d1uxx−χ(p(u)vx )x + cφ(u, v)− g(u), x ∈ (0, L), t > 0,

vt = d2vxx+ξ(q(v)ux )x + f (v)− φ(u, v), x ∈ (0, L), t > 0.

u(x , t), v(x , t): densities of predator and prey at location x and time t;
−χ(p(u)vx )x : attractive prey-taxis (predator moves towards prey)
+ξ(q(v)ux )x : repulsive predator-taxis (prey moves away from predator)
www2.nau.edu/lrm22/lessons/predator_prey/predator_prey.html, tomandjerryonline.com

www2.nau.edu/lrm22/lessons/predator_prey/predator_prey.html
tomandjerryonline.com
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Repulsive predator-taxis compressing spatial pattern

[Wu-Shi-Wang, 2018, M3AS to appear]
ut = d1uxx +

Buv

h + v
− ku − lu2, x ∈ (0, L), t > 0,

vt = d2vxx + ξ(vux )x + v(1− v)−
uv

h + v
, x ∈ (0, L), t > 0,

ux (0, t) = ux (L, t) = vx (0, t) = vx (L, t) = 0, t > 0.

Prey density: (left) ξ = 330; (middle) ξ = 200; (right) ξ = 0.
Here d1 = 400, d2 = 1, h = 0.3, k = 0.2, l = 0.5, L = 30π.

Turing patterns created by the different diffusion rates are compressed by the large
repulsive predator-taxis.
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Animal territory formation

[Lewis-White-Murray, 1997, JMB] [Potts-Lewis, 2014, Amer. Math. Monthly]
Model of wolf pack formation

ut = duxx + c(qu)x , x ∈ (0, L), t > 0,

vt = dvxx − c(pv)x , x ∈ (0, L), t > 0,

pt = (l + νq)u − µp, x ∈ (0, L), t > 0,

qt = (l + νp)v − µq, x ∈ (0, L), t > 0.

u(x , t), v(x , t): densities of two animal packs; p(x , t), q(x , t): densities of scents
of u, v respectively.

x = 0: den site for u; x = L: den site for v .

+c(qu)x , −c(pv)x : movement back towards the den.

l : baseline scent deposition rate, ν: additional deposition in the presence of
other pack’s scent.
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Animal territory formation

[Lewis-White-Murray, 1997, JMB] [Potts-Lewis, 2014, Amer. Math. Monthly]

(left): equilibrium solution of the 2-pack density-scent model;
(right): best fit of n-pack model to data on coyotes in Lamar Valley, Yellowstone
National Park.
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Predator-prey model with competition

[Berestycki-Zilio, 2017, preprint]
wi,t − di∆wi = (−ωi + kiu − µiwi − β

∑
j 6=i aijwj )wi , x ∈ Ω, t > 0,

ut − D∆u = (λ− µu −
∑N

i=1 kiwi )u, x ∈ Ω, t > 0,

∂nwi = ∂nu = 0, x ∈ ∂Ω, t > 0.

Here wi (x , t) is the population density of the i-th group of predators (1 ≤ i ≤ N), and
u(x , t) is the population of the prey.

Main results:

For a given domain Ω ⊂ Rn, if β is sufficiently large, then for any steady state,

there are only Ñ components of wi are not zero, and Ñ ≤
|Ω|
4π

max
1≤i≤N

λki − µωi

diµ
if n = 2.

For given Ω, there exists Ñ and a steady state solution (wi , u) which maximizes∫
Ω

N∑
i=1

wi .

As β →∞, the supports of wi are separated.
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Model of diffusion with spatial memory

[Shi-Wang Chuncheng-Wang Hao-Yan Xiangping, 2017, submitted]
Diffusion equation is based on the Fick’s law: the movement flux is in the direction of
negative gradient of the density distribution function. To include the episodic-like
spatial memory of animals, we propose a modified Fick’s law that in addition to the
negative gradient of the density distribution function at the present time, there is a
directed movement toward the negative gradient of the density distribution function at
past time. Such movement is based on the memory (or history) of a particular past
time density distribution:

ut(x , t) = D1∆u(x , t) + D2div(u(x , t)∇u(x , t − τ)) + g(x , t, u(x , t)),

where D1 is the Fickian diffusion coefficient, D2 is the memory-based diffusion
coefficient, the time delay τ > 0 represents the averaged memory period, and g
describes the chemical reaction or biological birth/death.

D2 < 0: animals are attracted to their past track; D2 > 0: animals avoid past
track.

This is similar to chemotaxis model before, but the chemical which attracts
animals is the animals’ past gradient.
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Wellposedness


∂u

∂t
= D1∆u + D2div(u∇uτ ) + g(u), x ∈ Ω, t > 0,

∂u

∂n
(x , t) = 0, x ∈ ∂Ω, t > 0,

u(x , t) = φ(x , t), x ∈ Ω,−τ ≤ t ≤ 0.

Here u = u(x , t), uτ = u(x , t − τ); Ω is a bounded domain in RN (N ≥ 1) with a
smooth boundary ∂Ω; a homogeneous Neumann boundary condition is imposed so
that there is no population movement across the boundary ∂Ω. The initial condition
φ(x , t) satisfies

φ(x , t) ∈ C2,0(Ω× [−τ, 0]),
∂φ

∂n
(x , t) = 0, (x , t) ∈ ∂Ω× [−τ, 0].

The growth rate g(u) is always assumed to satisfy

g ∈ C1([0,∞),R), g(0) = g(1) = 0, g(u) < 0, for u > 1.

Theorem 1. Suppose that D1 > 0 and D2 ∈ R. Then the above equation possesses a
unique solution u(x , t) for (x , t) ∈ Ω× [0,∞). Moreover if φ(x , t) ≥ 0 for
(x , t) ∈ ∂Ω× [−τ, 0], then u(x , t) > 0 for (x , t) ∈ Ω× (0,∞).

Question: Are the solutions uniformly bounded for all D1 > 0 and D2 ∈ R?
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Stability

Linearizred equation around a constant equilibrium u∗:


∂ψ

∂t
= D1∆ψ + D2u

∗∆ψτ + g ′(u∗)ψ, x ∈ Ω, t > 0,

∂ψ

∂n
(x , t) = 0, x ∈ ∂Ω, t > 0,

ψ(x , t) = ϕ0(x , t), x ∈ Ω,−τ ≤ t ≤ 0,

It can be solved by severation of variables ψ(x , t) =
∞∑
n=0

Tn(t)φn(x), where φn are

normalized eigenfunctions of −∆φn = λnφn with Neumann boundary condition, and
Tn(t) satisfies the delay differential equationT ′n(t) = (−D1λn + g ′(u∗))Tn(t)− D2u

∗λnTn(t − τ), t > 0,

Tn(t) = ϕ̃n(t) :=

∫
Ω
ϕ0(x , t)φn(x)dx , −τ ≤ t ≤ 0.

Theorem 2. Let u∗ be a constant steady state. If g ′(u∗) > 0, then u∗ is unstable for
any D1,D2 and τ ≥ 0; and if g ′(u∗) < 0, then u∗ is locally asymptotically stable when
D1 ≥ |D2|u∗ and τ ≥ 0, and it is unstable (with dim(unstable manifold)=∞) when
D1 < |D2|u∗ and τ > 0.
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Example: Logistic Equation


ut = D1∆u + D2div(u(x , t)∇u(x , t − τ)) + u(1− u), x ∈ Ω, t > 0,

∂nu(x , t) = 0, x ∈ ∂Ω, t > 0,

u(x , t) = φ(x , t), x ∈ Ω,−τ ≤ t ≤ 0.

Theorem 3. The equilibrium u = 0 is always unstable; the equilibrium u = 1 is locally
asymptotically stable when D1 ≥ |D2| and τ ≥ 0, and it is unstable when D1 < |D2|
and τ > 0. There are no other nonnegative equilibria.

Question: when D1 ≥ |D2| and τ > 0, is u = 1 globally asymptotically stable?

(left) τ = 1; (right): τ = 5. Here D1 = 1 and D2 = 0.9.
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Checker board patterns

There are no spatially nonhomogeneous time-periodic patterns generated through
Hopf bifurcations. But...

(top left) τ = 1; (top right) τ = 2; (bottom left) τ = 5; (bottom right) τ = 10.
Here D1 = 1, D2 = 1.1.
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Model with delays in both movement and growth

[Shi-Wang Chuncheng-Wang Hao, 2018, preprint]


∂u

∂t
= D1∆u + D2div(u∇uτ ) + g(u, uσ), x ∈ Ω, t > 0,

∂u

∂n
(x , t) = 0, x ∈ ∂Ω, t > 0,

u(x , t) = φ(x , t), (x , t) ∈ ∂Ω× [−max{τ, σ}, 0].

Here u = u(x , t), uτ = u(x , t − τ) and uσ = u(x , t − σ).

σ = 0 and τ > 0: previous model with movement with delay: no bifurcation of
stable periodic orbits;

σ > 0 and τ = 0: Diffusive Wright-Hutchinson equation: bifurcation of spatially
homogeneous stable periodic orbits [Yoshida, 1982, Hiroshima-MJ], [Memory,
1989, SIAM-JMA], [Friesecke, 1993, JDDE];

σ > 0 and τ = 0 (Dirichlet boundary condition): bifurcation of spatially
non-homogeneous stable periodic orbits from non-constant steady state
[Green-Stech, 1981, book chap], [Busenberg-Huang, 1996, JDE] [Su-Wei-Shi,
2009, JDE] [Yan-Li, 2010, Nonlinearity] more general case
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Stability

Characteristic equation: (µ is eigenvalue)

E(n, τ, σ, µ) := µ+ D1λn − A + D2u
∗λne

−µτ − Be−µσ = 0, n = 0, 1, 2, 3, · · · .

Theorem 4.
1. When D1 < |D2u∗|, for any τ > 0 and σ ≥ 0, there are infinitely many pairs of
complex roots with positive real parts so u∗ is linearly unstable.
2. When D1 > |D2u∗|, for any τ > 0 and σ ≥ 0, there exists N ∈ N such that all the
roots of have strictly negative real parts, for any n > N; and for 0 ≤ n ≤ N, there is a
spiral-like crossing curve in (τ, σ) plane which separates the parameter set which is
stable or unstable in mode-n, and it defines a mode-n stable region Θn in (τ, σ) plane,
and ∩∞n=0Θn is the stable parameter region. (Note that only finitely many Θn 6= ∅)

Eigenvalue problem with two delays:

[Hale-Huang, 1993, JMAA] [Ruan-Wei, 2003, DCDIS] [Gu et.al., 2005, JMAA]
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Example: Wright-Hutchinson equation with memory


∂u

∂t
= ∆u + Ddiv(u∇u(x , t − τ)) + u(1− u(x , t − σ)), x ∈ Ω, t > 0,

∂u

∂n
(x , t) = 0, x ∈ ∂Ω, t > 0.

Stability change for u = 1: (µ+ λn + Dλne−µτ + e−µσ = 0)
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Left: crossing curves for n = 0 (black solid), n = 1 (red solid) and n = 2 (blue
dotted); Right: zoom-in of the lower part. Ω = (0, 5) and D = 0.7.
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Patterns

Periodic solutions with different delays. Left: a spatially nonhomogeneous periodic
solution for (τ, σ) = (2, 1.52) ∈ R1; Right: a spatially homogeneous periodic solution
for (τ, σ) = (1, 1.7) ∈ R4. Here, Ω = (0, 5), D = 0.7 and the initial function
u(θ, x) = 1 + 0.1 cos(πx/5) for θ ∈ [−τ, 0].
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Homogeneous or nonhomogeneous?
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The crossing curves with different n, for D = 0.5 (left) and D = 0.9 (right). Here,
Ω = (0, 5).

Proposition 5. There a threshold diffusion coefficient D0 ∈ (0, 1) such that
nonhomogeneous periodic orbits emerge when D ∈ (D0, 1), and there are no
nonhomogeneous periodic orbit Hopf bifurcations for D ∈ (0,D0).
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More patterns

For D = 0.9 and τ = 2, the spatially nonhomogeneous periodic solutions for σ = 1.35
(left) and σ = 1.5 (right).

(Left) For D = 0.95, τ = 1.18 and σ = 1.5. Checker board again!
(Right) g = ru

(
1−

∫
Ω K(x , y)u(y , t − σ)dy

)
with triangular distribution function

K(x , y) such that
∫

Ω K(x , y)dy = 1 for any x . Here, D = 0.95, σ = 1.5 and τ = 80.



ODE Background One trans-term Logistic equation Proof: local Proof: nonlocal Conversion Steady States Examples Animal Movement Diffusion Taxis Delayed Taxis Two Delays Distributed Delay Conclusions

Type of time delays

Discrete delay: past track at exactly time τ ago

ut(x , t) = D1∆u(x , t) + D2div(u(x , t)∇u(x , t − τ)) + g(u(x , t)).

Distributed delay: average of all past tracks for all past time:

ut(x , t) = D1∆u(x , t) + D2div(u(x , t)∇v(x , t)) + g(u(x , t)), x ∈ Ω,

where

v(x , t) = g ∗ ∗u(x , t) =

∫ t

−∞

∫
Ω
G(x , y , t − s)g(t − s)u(y , s)dyds.

Here G(x , y , t − s) =
∞∑
n=1

e−D1n
2(t−s) cos(nx) cos(ny) (Green’s function of diffusion

equation) shows the movement under diffusion at the past time t − s, and the
probability distribution functions

(weak kernel) gw (t) =
1

τ
e−

t
τ , (strong kernel) gs(t) =

t

τ2
e−

t
τ ,

show the decay of the memory.
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Weak kernel system is equivalent to Keller-Segel model

[Shi Qingyan-Shi Junping-Wang Hao, 2018, in preparation]

ut(x , t) = D1∆u(x , t)− D2div(u(x , t)∇v(x , t)) + g(u(x , t)), x ∈ Ω,

where

v(x , t) = g ∗ ∗u(x , t) =

∫ t

−∞

∫
Ω
G(x , y , t − s)g(t − s)u(y , s)dyds.

with weak kernel is equivalent to Keller-Segel chemotaxis model with logistic growth:{
ut = D1∆u − D2div(u∇v) + g(u), x ∈ Ω, t > 0,

vt = D1∆v + τ−1u − τ−1v , x ∈ Ω, t > 0.

So that chemical attracting you is your decaying memory of all past movement!

v(x , t) is the memory (from t = −∞ to now) at location x and time t, which
decays at a rate 1/τ , and also increases at the same rate by the stimulate
u(x , t).

[Mimura-Tsujikawa, 1996, PhyA] [Hillen-Painter, 2011, PhyD]
[Kuto et.el., 2012, PhyD]
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Weak kernel simulations

(upper left) no pattern; (upper right) non-constant equilibrium;
(lower left) drifting time-periodic solution; (lower right): wandering time-periodic
solution.
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Strong kernel system

ut(x , t) = D1∆u(x , t)− D2div(u(x , t)∇v(x , t)) + g(u(x , t)), x ∈ Ω,

where

v(x , t) = g ∗ ∗u(x , t) =

∫ t

−∞

∫
Ω
G(x , y , t − s)g(t − s)u(y , s)dyds.

with weak kernel is equivalent to a Keller-Segel-like chemotaxis model with logistic
growth: 

ut = D1∆u − D2div(u∇v) + g(u), x ∈ Ω, t > 0,

vt = D1∆v + τ−1w − τ−1v , x ∈ Ω, t > 0,

wt = D1∆w + τ−1u − τ−1w , x ∈ Ω, t > 0.

Here v(x , t) is the past memory, w(x , t) is another signal (secondary memory?) which
stimulates the memory, and u(x , t) stimulates w(x , t).

The memory may be a complicated cognitive process involving several levels of
stimulations.

More generally the degree-n Gamma distribution function gn(t) = tne
− t

τ

τn+1Γ(n+1)

could induce an equivalent reaction-diffusion system with n + 1 equations.
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Strong kernel simulations

(upper left) non-constant equilibrium; (upper right) time-periodic solution;
(lower left) time-periodic solution; (lower right): time-periodic solution.
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Conclusions

Partial differential equation with movement oriented by past gradient is one of
ways of modeling memory-based animal movement.

Similar to well-known Keller-Segel chemotaxis models, the memory-based PDE
models can generate population aggregation in a stationary fashion. But they
may also produce spatiotemporal time-periodic patterns, which may be more
realistic for many repeatedly-occurring animal behavior.

Future work:
(i) numerically solving in two-dimensional region;
(ii) fitting real ecological data;
(iii) mathematical theory (non-standard PDE models: boundedness of solutions,
asymptotic behavior, traveling waves).
(iv) more general models:

ut(x , t) = D1∆u(x , t)− D2div(f1(u(x , t))∇f2(v(x , t))) + g(u(x , t)), x ∈ Ω,

where

v(x , t) = g ∗ ∗u(x , t) =

∫ t

−∞

∫
Ω
G(x , y , t − s)g(t − s)u(y , s)dyds,

and g and G are general kernel functions.
(v) multiple-species model: competition, predator-prey. (some work are
underway)
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