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First word

Terence McKenna (1946-2000)
The imagination is a dimension of nonlocal information.

Deepak Chopra (1946-)
DNA is a quantum computer that localizes a non-local omnipresent consciousness or
spirit into space time energy information and matter.

Bernie S. Siegel (1932-)
Consciousness is non-local and does not depend on words to communicate.
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Logistic equation

dP(t)

dt
= aP(t)

(
1−

P(t)

K

)
Here P(t) is the quantity of a substance at time t, a is the growth rate per capita,
and K is the carrying capacity. It has been extensively used in mathematical modeling
of physical, chemical, and biological events.

Logistic equation was first proposed Belgium mathematician Pierre Francois Verhulst
(1804-1849) in 1838. But it did not get any attention in 19th century.
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Fisher-Haldane-Wright law

Darwin-Mendel’s gene evolution theory assumes that the advantageous gene replaces
other gene in the long run through mutations or genetic drift. Suppose that for a gene
with two possible alleles: P (advantageous) and Q (non-advantageous). Then the
frequency of the advantageous gene in the n-th and (n + 1)-th generations is
described by the Fisher-Haldane-Wright law:

pn+1 =
(wx p2

n + wy pnqn)pn

wx p2
n + 2wy pnqn + wz q2

n

, qn+1 = 1− pn+1.

where wx : wy : wz are the fitness parameters of PP : PQ : QQ type genes.

Left: Charles Darwin (1809-1882), right: Gregor Mendel (1822-1884)
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Fisher-Haldane-Wright equation

Fisher-Haldane-Wright equation can be written as

pn+1 − pn = pn(1− pn)
(wx − wy )pn + (wy − wz )(1− pn)

wx p2
n + 2wy pn(1− pn) + wz (1− pn)2

Making the discrete process continuous, then we have
dp

dt
= p(1− p)

(wx − wy )p + (wy − wz )(1− p)

wx p2 + 2wy p(1− p) + wz (1− p)2

Finally we assume that wz = 1, wy = 1 + s, wx = 1 + 2s and s is a small positive

number,
dp

dt
= sp(1− p)

Left: Ronald Fisher (1890-1962), middle: J. B. S. Haldane (1892-1964), right: Sewall
Wright (1889-1988)
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Fisher-KPP equation

In the Fisher-Haldane-Wright Law, if the species also moves freely in the space, then
its population density also satisfies a diffusion equation. Hence we obtain a
reaction-diffusion equation assuming 1-D spatial domain:

∂p

∂t
= D

∂2p

∂x2
+ sp(1− p)

Here p(x , t) is the density function of the advantageous gene at location x and time t.
This equation was first proposed by Fisher in 1937, and in the same year Soviet Union
mathematicians Kolmogorov, Petrovski, Piskunov considered this nonlinear parabolic
partial differential equation. They introduced the concept of traveling wave. Today
this equation is called Fisher equation, KPP equation, or Fisher-KPP equation.

Left: Ronald Fisher (1890-1962), middle: Andrey Nikolaevich Kolmogorov
(1903-1987), right: Ivan Georgievich Petrovsky (1901-1973)
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Ecological Explanation of Fisher-KPP, nonlocal
competition

∂u(x , t)

∂t
= D∆u(x , t) + r(x)u(x , t)− a(x)u2(x , t).

1 Dispersal of population: diffusion D∆u(x , t) (can also be nonlocal dispersal,
advection)

2 Growth and death: r(x)u(x , t) with r(x) = b(x)− d(x) (birth-death)

3 Crowding effect: −a(x)u(x , t) · u(x , t) (interaction: mass action)

With proper boundary conditions, the Fisher-KPP equation has at most one positive
steady state solution, and it is globally asymptotically stable when it exists.
[Lou, 2006, JDE] [Liang-Lou, 2012, DCDSB]
[He-Ni, 2016, CVPDE] [DeAngelis-Ni-Zhang, 2016, JMB]

The crowding effect is caused by the intraspecific competition with peers of the same
species, which may be not at the same spatial location. Hence the crowding effect can
be modeled as

−
∫

Ω
K(x , y)u(y , t)u(x , t)dy .

Here K(x , y) is probability of an individual at y competes with the one at x , and
u(x , t), u(y , t) are the population density at x , y respectively.
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Nonlocal dispersal

[Hutson-Martinez-Mischaikow-Vickers, JMB, 2003]
[Bates-Fife-Ren-Wang, ARMA, 1997] [Bates-Chmaj, JSP, 1999]
Divide R (the habitat) into contiguous sites, each of length ∆x . Discretize time into
steps of size ∆t. Let u(i , t) be the density of individuals in site n at time t. Assume
that the probability of individuals leaving site i and going to site j is α(j , i). Then the
number of individuals leaving site i during the interval [t, t + ∆t] is
∞∑

j=−∞
α(j , i)u(i , t)(∆x)2∆t. During this same time interval, the number of arrivals to

site i from elsewhere is
∞∑

j=−∞
α(i , j)u(j , t)(∆x)2∆t. Finally let f (u(i , t), i) denote the

per capita net reproduction rate at site i at the given population density.

u(i , t+∆t) = u(i , t)+

 ∞∑
j=−∞

α(i , j)u(j , t)−
∞∑

j=−∞
α(j , i)u(i , t)

∆x∆t+f (u(i , t), i)u(i , t)∆t.

Limit as ∆x ,∆t → 0:

ut (x , t) =

∫
R

[α(x , y)u(y , t)− α(y , x)u(x , t)]dy + f (u(x , t), x)u(x , t).
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Relation to diffusion model

If

∫
R
α(y , x)dy = 1 (probability), then

ut (x , t) =

∫
R
α(x , y)u(y , t)dy − u(x , t) + f (u(x , t), x)u(x , t).

If α(x , y) = k(x − y) (only depends on distance between x and y), then

ut (x , t) =

∫
R

k(x − y)u(y , t)dy − u(x , t) + f (u(x , t), x)u(x , t)

∫
R

k(x − y)u(y , t)dy =

∫
R

k(y)u(x − y , t)dy =

∫
R

k(y)
∞∑

j=0

u
(j)
x (x , t)

j!
(−y)j dy

=
∞∑

j=0

u
(j)
x (x , t)

j!

∫
R

k(y)(−y)j dy = u(x , t) +
1

2
uxx (x , t)

∫
R

k(y)(−y)2dy + · · · .

So by using Taylor expansion, we can see the diffusion equation is the first
approximation of the nonlocal dispersal model.

[Lutscher-Pachepsky-Lewis, SIAM-AM, SIAM-Rev, 2005]
[Corta’zar-Coville-Elgueta-Marti’nez, JDE, 2007], [Bates-Zhao, JMAA, 2007]
[Coville-Da’vila-Marti’nez, JDE, 2008], [Coville-Da’vila-Marti’nez, SIAM-MA, 2008]
and many others



Background Nonlocal Fisher Extensions and Related Results Systems Conclusions Pattern formation Scalar equation 2× 2 system Conclusion

Nonlocal competition

Fisher-KPP equation: ut = Duxx + au(1− u)

Nonlocal Fisher-KPP equation: ut = Duxx + au

(
1−

∫
Ω

k(x − y)u(y , t)dy

)
[Britton, JTB, 1989], [Britton, SIAM-AM, 1990], [Gourley, JMB, 2000]
[Fuentes-Kuperman-Kenkre, PRL, 2003; JPC, 2004]

The nonlocal term represents intra-specific competition for resources and having this
particular form implies that individuals are competing not only with others at their
own point in space but also with individuals at other points in the domain.

[Martinez-Garcia, et.al. 2012, PTRS]

Nonlocal growth. ut = Duxx + a

∫
Ω

k(x − y)u(y , t)dyu (1− u)− αu.

Nonlocal death. ut = Duxx + au (1− u)− α
∫

Ω
k(x − y)u(y , t)dy .
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Nonlocal Fisher-KPP Equation


∂u(x , t)

∂t
= d∆u(x , t) + λu(x , t)

(
1−

∫
Ω

K(x , y)u(y , t)dy

)
, x ∈ Ω, t > 0,

Bu(x , t) = 0, x ∈ ∂Ω, t > 0,

1 Ω is a bounded domain with smooth boundary in Rn or Rn, n ≥ 1.

2 Boundary condition Bu = u (Dirichlet), Bu =
∂u

∂n
(Neumann).

3 Integral kernel K : Ω× Ω→ [0,∞) is an integrable function.
(Or more generally, K [u] is a bounded linear operator.)

Typical kernels:

Constant (even distribution): K(x , y) ≡ |Ω|−1; (|Ω| =Lebesgue measure of Ω)

Separable: K(x , y) = K1(x)K2(y);

Symmetric: K(x , y) = K(y , x) (Distance-dependent: K(x , y) = K3(|x − y |));

Diffusion: K(x , y) = Green’s function of −d∆ + c:
(−d∆x + c)K(x , y) = δ(x , y) where c ≥ 0;

Dirac delta (local): K(x , y) = δ(x , y);

Questions:
1. Is there a positive steady state solution?
2. Is the positive steady state unique? and (globally asymptotically) stable?
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Constant or symmetric kernel

[Allegretto-Barabanova, 1997, Funk. Ekva.], [Chen-Shi, 2012, JDE]
∂u(x , t)

∂t
= d∆u(x , t) + u(x , t)

(
λ−

∫
Ω

u(y , t)dy

)
, x ∈ Ω, t > 0,

u(x , t) = 0, x ∈ ∂Ω, t > 0,

Theorem. The equation has a unique positive equilibrium uλ(x) = (λ− dλ1)φ1(x) for
any λ > dλ1, where (λ1, φ1) is the principal eigenvalue-eigenfunction pair of
−∆φ = λφ in H1

0 (Ω). Moreover it is globally asymptotically stable for λ > dλ1.


∂u(x , t)

∂t
= d∆u(x , t) + u(x , t)

(
λ− b(x)u(x , t)−

∫
Ω

K(x , y)up(y , t)dy

)
, x ∈ Ω, t > 0,

u(x , t) = 0, x ∈ ∂Ω, t > 0,

Here b(x) ≥ (6≡)0, and p > 0.

[Yamada, 2015, NA]
Theorem. If K(x , y) = K(y , x), K > 0 and p = 2, then the equation has a unique
positive steady state solution when λ ∈ (λ1,∞), which is globally asymptotically
stable.
If p 6= 2, then the positive steady state still exists, but the uniqueness and stability is
not known.
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An application

[Altschuler-Angenent-Wang-Wu, Nature, 2008]
On the spontaneous emergence of cell polarity

A partial differential equation model for the polarization of the GTPase Cdc42 in
budding yeast

ut = Duxx + kon

(
1−

1

2L0

∫ L0

−L0

u

)
− koff u + kfb

(
1−

1

2L0

∫ L0

−L0

u

)
u,

where u(x , t) is the density of membrane-bound molecules (GTPase Cdc42) defined
on the membrane −L0 < x < L0. Here spontaneous association of cytoplasmic
molecules to random locations on the PM is modeled by kon term, random
disassociation of signaling molecules from the membrane is described by koff term, and
recruitment of cytoplasmic molecules to the locations of membrane-bound signaling
molecules is indicated by kfb term.
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Separable kernel


∂u(x , t)

∂t
= d∆u(x , t) + uq(x , t)

(
λ− a(x)

∫
Ω

b(y)up(y , t)dy

)
, x ∈ Ω, t > 0,

u(x , t) = 0, x ∈ ∂Ω, t > 0,

Here b(x) ≥ (6≡)0, 0 < q ≤ 1, and p > 0.

[Correa-Delgado-Suarez, 2011, ADE] [Yamada, 2015, NA]
If q = 1 and a(x) ≥ 0, then the equation has a unique positive steady state solution
when λ ∈ (λ1(Ω), λ1(Ω0)), where λ1(O) is the principal eigenvalue of −∆ in H1

0 (O),
and Ω0 = {x ∈ Ω : a(x) = 0} (so λ1(Ω0) =∞ if Ω0 = ∅.) Moreover when
a(x) = b(x) and p = 2, then the unique steady state solution is globally
asymptotically stable.

Note:

1 Also results for 0 < q < 1 and a(x) ≤ 0.

2 [Ouyang, 1992, TAMS] similar results for ∆u + au − h(x)up = 0
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Diffusion kernel (Dirichlet BC)

[Zuo-Shi, 2016, preprint]ut = d1∆u + u

(
a− u − b

∫
Ω

K1(x , y)F (u(y))dy

)
, x ∈ Ω, t > 0,

u(x , t) = 0, x ∈ ∂Ω, t > 0,

where F (u) is a continuous function with F (0) = 0 and F ′(u) > 0 for u > 0. Here
K1(x , y) is the Green’s function of −d3∆ + c with Dirichlet boundary condition
(c ≥ 0). Hence the equation is equivalent to

ut = d1∆u + u (a− u − bw) , x ∈ Ω, t > 0,

0 = d3∆w − cw + F (u), x ∈ Ω, t > 0,

u(x , t) = w(x , t) = 0, x ∈ ∂Ω, t > 0.

This is a parabolic-elliptic system of predator-prey type.

Theorem. For a > dλ1, there exists a positive steady state solution. If n = 1, then the
positive steady state solution is unique and non-degenerate.

Existence: bifurcation theory and a priori estimates.
Uniqueness: [Casal-Eilbeck-Lopez-Gomez, 1994, DIE]
Stability: not known
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Diffusion kernel (Neumann BC)

[Ni-Shi-Wang, 2018, JDE]
ut = d1∆u + u

(
a− u − b

∫
Ω

K1(x , y)F (u(y))dy

)
, x ∈ Ω, t > 0,

∂u(x , t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω,

(1)

where F (u) is a continuous function with F (0) = 0 and F ′(u) > 0 for u > 0. Here
K1(x , y) is the Green’s function of −d3∆ + 1 with Neumann boundary condition.
Hence (17) is equivalent to


ut = d1∆u + u (a− u − bw) , x ∈ Ω, t > 0,

0 = d3∆w − w + F (u), x ∈ Ω, t > 0,
∂u(x , t)

∂ν
=
∂w(x , t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

(2)

This is a parabolic-elliptic system of predator-prey type.
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Diffusion kernel (Neumann BC)

[Ni-Shi-Wang, 2018, JDE]
Consider the following fully parabolic system:

ut = d1∆u + u (a− u − bw) , x ∈ Ω, t > 0,

τwt = d3∆w − w + F (u), x ∈ Ω, t > 0,
∂u(x , t)

∂ν
=
∂w(x , t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

Theorem. Suppose that d1, d3, a, b > 0, and F (u) is a continuous function with
F (0) = 0 and F ′(u) > 0 for u > 0. Then for any τ ≥ 0, the unique positive constant
steady state solution of the above parabolic system is globally asymptotically stable.

Corollary. For the nonlocal Fisher-KPP equation with diffusion kernel
ut = d1∆u + u

(
a− u − b

∫
Ω

K1(x , y)F (u(y))dy

)
, x ∈ Ω, t > 0,

∂u(x , t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω,

there is a unique positive steady state solution, which is a constant. Moreover it is
globally asymptotically stable with respect to all non-negative initial condition which is
not identically zero.
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Proof


ut = d1∆u + u (a− u − bw) , x ∈ Ω, t > 0,

τwt = d3∆w − w + F (u), x ∈ Ω, t > 0,
∂u(x , t)

∂ν
=
∂w(x , t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

Proof 1. Use lower-upper solution method.

u1 = a, w1 = F (u1),

u1 = a− bw1, w1 = F (u1), u2 = a− bw1

Proof 2. Use Lyapunov function method.

Q(u,w) =

∫
Ω

∫ u

ũ

F (s)− F (ũ)

s
dsdx +

bτ

2

∫
Ω

(w − w̃)2dx .

Note: if −d3∆ + 1 is replaced by −d3∆, the original nonlocal problem is not
well-defined as −d3∆ is not invertible in H1.
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Existence in general case


∂u(x , t)

∂t
= d∆u(x , t) + λu(x , t)

(
1−

∫
Ω

K(x , y)up(y , t)dy

)
, x ∈ Ω, t > 0,

Bu(x , t) = 0, x ∈ ∂Ω, t > 0,

[Sun-Shi-Wang, 2013, ZAMP], [Yamada, 2015, NA]
[Alves-Delgado-Suarez, 2015, ZAMP]
Theorem. If K ∈ L∞ and K(x , y) > 0, then the equation has a positive steady state
solution. Moreover when p = 1, the positive steady state solution is unique and locally
asymptotically stable if the eigenvalue problem

L[φ] = ∆φ(x) + λφ(x)− λφ(x)

∫
Ω

f (x , y)u(y)dy − λu(x)

∫
Ω

f (x , y)φ(y)dy ,

has a principal eigenvalue (real-valued with positive eigenfunction).

[Sun-Shi-Wang, 2015, ZAMP, Erratum] there are examples that the real eigenvalue
with positive eigenfunction is not the principal one.

Open Question: Prove (or disprove) the uniqueness and/or (local or global) stability of
the positive steady state solution for general kernel function K(x , y). [Lam, 2019 to
appear, DCDSB](non-uniqueness?)
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Other non-local Fisher-KPP equations

[Lou-Nagylaki-Su, 2013, JDE]


ut =

∑
Vij uxi xj + b · ∇u + B

(∫
Ω

u(y)dy − u

)
u + λg(x)u(1− u), x ∈ Ω, t > 0,

ν · V∇u = 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

The positive steady state solution is unique and globally stable when it exists.
(in this case, the maximum principle holds and the principal eigenvalue of associated
linearized operator exists.)

[Delgado et.al., 2016, TMNA]
ut = ∆u + u(a + b

∫
Ω

ur (y)dy − u), x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

where r > 0. The positive steady state is unique when r ≤ 1, but the solution may
blow up in finite time for large b > 0.

[Correa-Delgado-Suarez, 2011, MCM] [Correa-Suarez, 2012, MMAS]
[Li-Coville-Wang, 2017, DCDSA] principal eigenvalue, maximum principle
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Nonlocal Fisher in Rn

∂u(x , t)

∂t
= d∆u(x , t) + µu(x , t)

(
1−

∫
Rn

K(x − y)u(y , t)dy

)
, x ∈ Rn, t > 0.

Here K ∈ C 1, K ≥ 0 and
∫
Rn K(x)dx = 1.

[Berestycki-Nadin-Perthame-Ryzhik, 2009, Nonlinearity]
[Hamel-Ryzhik, 2014, Nonliearity]

Theorem.
1. For n = 1, if 0 < µ < µ0 or the Fourier transform K̂ > 0, then the only
non-negative bounded steady state solutions are u = 0 and u = 1.
2. For n = 1, if there exists k0 ∈ N such that K̂(k0/L) < 0, and all other K̂(k/L) > 0,
then there exist non-constant positive steady state solution for large µ.

Also results on traveling wave solutions. [Fang-Zhao, 2011, Nonlinearity]



Background Nonlocal Fisher Extensions and Related Results Systems Conclusions Pattern formation Scalar equation 2× 2 system Conclusion

Nonlocal Lotka-Volterra two-species competition system

[Ni-Shi-Wang, 2018, JDE]

ut = d1∆u + u

(
α− u − c11

∫
Ω

K1(x , y)u(y , t)dy

)
− u

(
c12

∫
Ω

K2(x , y)v(y , t)dy + a1v

)
, x ∈ Ω, t > 0,

vt = d2∆v + v

(
β − v − c22

∫
Ω

K2(x , y)v(y , t)dy

)
− v

(
c21

∫
Ω

K1(x , y)u(y , t)dy + a2u

)
, x ∈ Ω, t > 0,

∂νu(x , t) = ∂νv(x , t) = 0, x ∈ ∂Ω, t > 0.

When cij = 0, it becomes the well-known Lotka-Volterra competition system
ut = d1∆u + u (α− u − a1v) , x ∈ Ω, t > 0,

vt = d2∆v + v (β − v − a2u) , x ∈ Ω, t > 0,

∂νu(x , t) = ∂νv(x , t) = 0, x ∈ ∂Ω, t > 0.

1 If α > max{β/a2, βa1}, then (α, 0) is globally asymptotically stable.
2 If α < max{β/a2, βa1}, then (0, β) is globally asymptotically stable.

3 If βa1 < α < β/a2, then (
β − αa2

1− a1a2
,
α− βa1

1− a1a2
) is globally asymptotically stable.

4 If β/a2 < α < βa1, then (α, 0) and (0, β) are bistable.
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Nonlocal Lotka-Volterra two-species competition system

Convert it into a parabolic-elliptic system:

ut = d1∆u + u (α− u − c11w − c12z − a1v) , x ∈ Ω, t > 0,

vt = d2∆v + v (β − v − c21w − c22z − a2u) , x ∈ Ω, t > 0,

0 = d3∆w − w + u, x ∈ Ω, t > 0,

0 = d4∆z − z + v , x ∈ Ω, t > 0,
∂u(x , t)

∂ν
=
∂v(x , t)

∂ν
=
∂w(x , t)

∂ν
=
∂z(x , t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, v(x , 0) = v0(x) ≥ 0, x ∈ Ω.

Theorem. If the parameters α, β, a1, a2 and c11, c12, c21, c22 satisfy

c12 + a1

c22 + 1
β < α <

c11 + 1

c21 + a2
β,

and
c11 <

c21

c21 + 2a2
, c22 <

c12

c12 + 2a1
,

then the unique positive constant steady state solution (ũ, ṽ , w̃ , z̃) is globally
asymptotically stable.

Proof is based on Lyapunov function method.
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Segregation coexistence

Theorem. If the parameters α, β, a1, a2 and c11, c12, c21, c22 satisfy

c12 + a1

c22 + 1
β < α <

c11 + 1

c21 + a2
β,

and
c11, c22 > 1, 0 < 1− a1, 1− a2 � 1, 0 < c12 � c21,

then when 0 < d1, d2 < d0 for some d0, there exists a non-constant positive steady
state solution.
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Segregated coexistence steady states for weak competition case. Here c11 = c22 = 4,
c12 = 19.2, c21 = 0.3, α = 83.32, β = 20, d1 = d2 = 0.3 and a1 = a2 = 0.9. Initial
density u(x , 0) = 0.3 and v(x , 0) = 1.2 + 0.2 sin(x).
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Mechanisms of segregated coexistence in Lotka-Volterra
system
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[Kishimoto-Weinberger, 1985, JDE] If Ω is convex, then a locally asymptotically
stable steady state solution must be constant.

[Mimura-Kawasaki, 1980, JMB] Segregated coexistence is possible in 1-D if
there is cross-diffusion between species.

[Matano-Mimura, 1983, PRIMS] Segregated coexistence is possible in n-D if the
domain is dumbbell-shaped.

[Mimura et.al., 1984, Hiroshima MJ] Segregated coexistence is possible in 1-D if
there is nonlinear diffusion.

[Chen-Lam-Lou, 2012, DCDSA], [Lam-Ni, 2014, JDE] Segregated coexistence is
possible in 1-D if there is advection.

[Ni-Shi-Wang, 2018, JDE] Segregated coexistence is possible in 1-D if there is
nonlocal competition.
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Two chemical-reaction models

Autocatalytic chemical reaction model with decay
−∆u1 = λu2 − λu1u2, x ∈ Ω,

− d∆u2 = λu2 − λu1u2 − kuq
2 , x ∈ Ω,

u1 = u2 = 0, x ∈ ∂Ω.

d , λ > 0, k ≥ 0, and q ≥ 1.
k = 0: [Shi-Wang, 2006, JDE], [Jiang-Shi, 2008, DCDS-A]
k > 0: [Zhao-Shi-Wang, 2012, JDE] [Zhou-Shi, 2014, PRSE]

Nuclear reactor model
−∆u1 = au1 − bu1u2, x ∈ Ω,

−∆u2 = cu1 − du1u2 − eu2, x ∈ Ω,

u1 = u2 = 0, x ∈ ∂Ω.

a, b, c, d , e > 0.
[Arioli, 2007, JDE] [Lopez-Gomez, 2009, JDE]
[Peng-Wei-Yang, 2010, PRSE] [Zhou-Shi, 2013, AML]
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Converting to nonlocal Fisher

[Zhou-Shi, 2013, AML] [Zhou-Shi, 2014, PRSE]
−∆u1 = λu2 − λu1u2, x ∈ Ω,

− d∆u2 = λu2 − λu1u2 − kuq
2 , x ∈ Ω,

u1 = u2 = 0, x ∈ ∂Ω.

Let z = u1 − du2 and v = u2. Then (z, v) satisfies −∆z = kvq and
−d∆v = (λ− kvq−1 − λdv − λz)v . By using Green’s function G(x , y), v satisfies

−d∆v = v

[
λ− kvq−1 − λdv − λk

∫
Ω

G(x , y)vq(y)dy

]
.


−∆u1 = au1 − bu1u2, x ∈ Ω,

−∆u2 = cu1 − du1u2 − eu2, x ∈ Ω,

u1 = u2 = 0, x ∈ ∂Ω.

Set w = u − bv/d , then (w , u) satisfies
−∆w + ew =

(
a + e −

bc

d

)
u, x ∈ Ω,

−∆u = u(a− du + dw), x ∈ Ω,

w = u = 0, x ∈ ∂Ω.

Uniqueness of positive solution of nonlocal Fisher-KPP equation will imply the
uniqueness of positive solution to these two systems. (n = 1, the uniqueness is known)
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Conclusion


∂u(x , t)

∂t
= d∆u(x , t) + λu(x , t)

(
a− bu(x , t)−

∫
Ω

K(x , y)up(y , t)dy

)
, x ∈ Ω, t > 0,

Bu(x , t) = 0, x ∈ ∂Ω, t > 0,

1 Nonlocal Fisher-KPP equation arises in various mathematical models in
population ecology, cell biology and other disciplines. The existence of positive
steady state solution can be established using bifurcation theory or topological
degree theory.

2 When the kernel function is symmetric, separable, or diffusion type, the
uniqueness of steady state solution has been proved, and very often the
uniqueness is proved by proving the global stability of the positive steady state
with respect to associated dynamics.

3 The uniqueness and/or stability of positive steady state solution for general
kernel function is not known. It is an interesting question to prove or disprove it.

4 There have been extensive studies in nonlocal spatial dispersal in recent years.
The studies of nonlocal dependence on the growth rate or crowding effect is
another interesting questions.
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Pattern formation in biology

[Turing, 1952] The Chemical Basis of Morphogenesis. Phil.Trans.Royal Soc. London.B

Reaction-diffusion system (R-D): ut = d1∆u + f (u, v), vt = d2∆v + g(u, v)
A spatially homogenous steady state is stable w.r.t. homogenous perturbation, but is
unstable w.r.t. inhomogeneous perturbation. Hence some stable non-constant
non-equilibrium state (patterns) exist to show the complex spatial-temporal structure,
as a result of symmetry breaking bifurcation.

Figure (left) from: Towards an integrated experimentaltheoretical approach for assessing the mechanistic basis of

hair and feather morphogenesis, by K. J. Painter et.al. Interface Focus. 2012 Aug 6;2(4):433-50
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Spatial patterns in ecology

Left: Tiger bush in Niger; Right: fairy circles in Namibia

Left: mussel patterning in Netherland; Right: marsh grass along York River, VA, USA

Photo from: en.wikipedia.org/wiki/Tiger_bush,
lainfo.es/en/2014/05/21/competition-between-plants-...

mainsequenceblog.com/2008/11/18/dance-of-the-mussels/, Rom Lipcius

en.wikipedia.org/wiki/Tiger_bush
lainfo.es/en/2014/05/21/competition-between-plants-...
mainsequenceblog.com/2008/11/18/dance-of-the-mussels/
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Turing instability


ut = d1∆u + f (u, v), x ∈ Ω, t > 0,

vt = d2∆v + g(u, v), x ∈ Ω, t > 0,

∂νu(x , t) = ∂νv(x , t) = 0, x ∈ ∂Ω, t > 0.

Equilibrium point: f (u0, v0) = g(u0, v0) = 0.

Linearized equation: L

(
φ
ψ

)
=

(
d1∆φ
d2∆ψ

)
+

(
fu fv

gu gv

)(
φ
ψ

)
stability of matrix Lj

(
aj

bj

)
=

(
−dµj + fu fv

gu −µj + gv

)
= λ

(
aj

bj

)
,

where µj satisfies ∆φj + µjφj = 0, x ∈ Ω, ∂νφ = 0, x ∈ ∂Ω.

Stable for ODE: fu + gv < 0, and fugv − fv gu > 0.
Unstable for PDE: fu < 0 (inhibitor), gv > 0 (activator), d1 is small or d2 is large.

[Turing, 1952] If the above conditions are satisfied, then the constant steady state
(u0, v0) is stable w.r.t. the ODE system, but it is unstable w.r.t. the PDE system; for
some j ∈ N, one of the eigenvalues of Lj is positive, then the PDE system may have a
non-constant steady state with spatial profile φj (x).



Background Nonlocal Fisher Extensions and Related Results Systems Conclusions Pattern formation Scalar equation 2× 2 system Conclusion

Turing’s classification of patterns

Steady state pattern: (u(x , t), v(x , t)) = (u(x), v(x)).
Time-oscillatory pattern: (u(x , t + T ), v(x , t + T )) = (u(x , t), v(x , t))

(Figure from: [Kondo-Miura, 2010, Science])

[Turing, 1952]: “The two remaining possibilities (oscillatory cases) can only occur with
three or more morphogens.”

Conjecture?: If (u0, v0) is a constant steady state for a 2-D RD system which is stable
for ODE dynamics, then the diffusive system cannot have (stable) periodic orbits.
Known: If (u0, v0) is a constant steady state for a 2-D RD system which is unstable
for ODE dynamics, then the diffusive system can have (a lot of) periodic orbits.
[Yi-Wei-Shi, 2009, JDE] [Jin-Shi-Wei-Yi, 2013, Rocky Moun. J. Math]
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When there is no pattern formation?

1 Scalar reaction-diffusion equation: ut = d∆u + f (u), x ∈ Ω, ∂nu = 0, x ∈ ∂Ω.
[Casten-Holland, 1978, JDE] [Matano, 1979, PRIMS]
any stable steady state on a convex domain is constant.

2 Nearly same diffusion coefficients: the constant steady remains stable.

3 Gradient/dissapative systems: Lyapunov functional/LaSalle invariance principle.

4 Cooperative or competitive reaction-diffusion systems: not activator-inhibitor
(consumer-resource, predator-prey) systems; Usually no stable non-constant
steady state on convex domain, and no stable time-periodic solutions.
[Kishimoto-Weinberger, 1985, JDE] [Hirsch, Smith, monotone system]

What additional structure can cause spatial patterns? (mostly competitive systems)

[Mimura-Kawasaki, 1980, JMB] cross-diffusion

[Matano-Mimura, 1983, PRIMS] non-convex dumbbell-shaped domain

[Mimura et.al., 1984, Hiroshima MJ] nonlinear diffusion

[Chen-Lam-Lou, 2012, DCDSA], [Lam-Ni, 2014, JDE] advection

[Ni-Shi-Wang, 2018, JDE] nonlocal competition

[Shi-Shi-Song, 2018, preprint] nonlocal spatial average
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RD equation with spatial average

Define ū =
1

|Ω|

∫
Ω

u(x , t)dx .

{
ut = d∆u + λf (u, ū), x ∈ Ω, t > 0,

∂νu = 0, x ∈ ∂Ω, t > 0,
(3)

and its “localized equation”:{
ut = d∆u + λf (u, u), x ∈ Ω, t > 0,

∂νu = 0, x ∈ ∂Ω, t > 0,
(4)

Theorem 1. Suppose that u = u∗ satisfying f (u∗, u∗) = 0 is a constant steady state
which is locally asymptotically stable w.r.t. (4), i.e. fu(u∗, u∗) + fū(u∗, u∗) < 0.
(i) If fu(u∗, u∗) < 0, then u∗ is locally asymptotically stable for all d , λ > 0.
(ii) If fu(u∗, u∗) > 0, then there exists λ1 = dµ1/fu(u∗, u∗) > 0 such that u∗ is locally
asymptotically stable for 0 < λ < λ1, and it is unstable for λ > λ1. A stable spatial
pattern can emerge at λ = λ1.

A scalar RD equation can generate a spatial pattern if there is a proper effect by
the spatial average: local activator (fu > 0), and nonlocal inhibitor (fū < 0 and
fu + fū < 0).

[Furter-Grinfeld, 1989, JMB] special case.
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Example of pattern formation

[Furter-Grinfeld, 1989, JMB]
ut = d∆u + λu(1 + au − bū), x ∈ Ω, t > 0,

∂νu = 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω,

Here a, b, d , λ > 0. Then λ1 = dµ1/a is the bifurcation point. For λ > λ1, there is a
spatial pattern.

Left: converges to constant steady state with a homogeneous perturbation from
steady state;
Right: generates a spatial pattern with a nonhomogeneous perturbation from steady
state.
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Example of no pattern formation

[Altschuler et.al., 2008, Science]
A partial differential equation model for the polarization of the GTPase Cdc42 in
budding yeast{

ut = d∆u + kon(1− ū) + kfb(1− ū)u − koff u, x ∈ Ω, t > 0,

∂νu = 0, x ∈ ∂Ω, t > 0.

where u(x , t) is the density of membrane-bound molecules (GTPase Cdc42) defined
on the cell membrane. Here spontaneous association of cytoplasmic molecules to
random locations on the PM is modeled by kon term, random disassociation of
signaling molecules from the membrane is described by koff term, and recruitment of
cytoplasmic molecules to the locations of membrane-bound signaling molecules is
indicated by kfb term.

Proposition 2. The unique positive equilibrium u = u∗ is globally asymptotically
stable. So there is no any spatial pattern.
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System with spatial average

Nonlocal system: 
ut = d1∆u + f (u, v , ū, v̄ , λ), x ∈ Ω, t > 0,

vt = d2∆v + g(u, v , ū, v̄ , λ), x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

(5)

where ū =
1

|Ω|

∫
Ω

u(x , t)dx , v̄ =
1

|Ω|

∫
Ω

v(x , t)dx , and its “localized system”:


ut = d1∆u + f (u, v , u, v , λ), x ∈ Ω, t > 0,

vt = d2∆v + g(u, v , u, v , λ), x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0.

(6)

Constant steady state: f (u∗, v∗, u∗, v∗, λ) = 0, g(u∗, v∗, u∗, v∗, λ) = 0.

Stability is determined by (all evaluated at (u∗, v∗, u∗, v∗)):

JU =

(
fu fv

gu gv

)
, JU + JŪ =

(
fu + fū fv + fv̄

gu + gū gv + gv̄

)
, D =

(
d1 0
0 d2

)
,

and µj satisfies ∆φj + µjφj = 0, x ∈ Ω, ∂νφ = 0, x ∈ ∂Ω.
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Stability

Nonlocal system: Ut = D∆U + F (U, Ū, λ)
Local system: Ut = D∆U + F (U,U, λ)

1 Mode-0 stability for both nonlocal and local systems: matrix JU + JŪ ,

2 Mode-n stability for nonlocal system: matrix JU − µnD, JŪ only affects mode-0

3 Mode-n stability for local system: matrix JU + JŪ − µnD.

Bifurcation scenarios:

Nonlocality induced steady state bifurcation (Turing bifurcation, spatial pattern):

1 stable in mode-0: Tr(JU + JŪ ) < 0, and Det(JU + JŪ ) > 0;

2 stable for local mode-n: Tr(JU + JŪ − µnD) < 0, and Det(JU + JŪ − µnD) > 0;

3 unstable for nonlocal mode-n: Tr(JU − µnD) < 0, and Det(JU − µnD) < 0.

Nonlocality induced Hopf bifurcation (spatiotemporal pattern):

1 stable in mode-0: Tr(JU + JŪ ) < 0, and Det(JU + JŪ ) > 0;

2 stable for local mode-n: Tr(JU + JŪ − µnD) < 0, and Det(JU + JŪ − µnD) > 0;

3 unstable for nonlocal mode-n: Tr(JU − µnD) > 0, and Det(JU − µnD) > 0.
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Example 1: predator-prey model

Diffusive Rosenzweig-MacArthur predator-prey system with nonlocal carrying capacity

ut = d1uxx + u

(
1−

1

klπ

∫ lπ

0
u(x , t)dx

)
−

muv

u + 1
, x ∈ (0, lπ), t > 0,

vt = d2vxx − θv +
muv

u + 1
, x ∈ (0, lπ), t > 0,

ux (0, t) = ux (lπ, t), vx (0, t) = vx (lπ, t), t > 0,

u(x , 0) = u0(x) ≥ 0, v(x , 0) = v0(x) ≥ 0, x ∈ (0, lπ),

(7)

[Yi-Wei-Shi, 2009, JDE]: local system has stable spatially homogeneous periodic
solution, but it has no stable spatially nonhomogeneous periodic solution or spatially
nonhomogeneous steady state from bifurcation
[Merchant-Nagata, 2011, JTB]: propose nonlocal system
[Chen-Yu, 2018, DCDSA]: nonlocal system has spatially nonhomogeneous periodic
solution
[Shi-Shi-Song, 2018, preprint]: nonlocal system has both spatially nonhomogeneous
periodic solution and spatially nonhomogeneous steady state from bifurcation
[Bayless-Volpert, 2013-1018]: pattern formation, traveling wave for similar nonlocal
system on R
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Simulations

Top: mode-2 spatially nonhomogeneous steady state;
Bottom: mode-2 spatially nonhomogeneous periodic solution

[Yi-Wei-Shi, 2009, JDE]: localized model has globally asymptotically stable constant
steady state
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Example 2: Lotka-Volterra cooperative model


ut = βuxx + u

(
1−

a

lπ

∫ lπ

0
u(x , t)dx + bv

)
, x ∈ (0, lπ), t > 0,

vt = vxx + v (1 + cu − dv) , x ∈ (0, lπ), t > 0,

ux (0, t) = ux (lπ, t) = 0, vx (0, t) = vx (lπ, t) = 0, t > 0,

u(x , 0) = u0(x) ≥ 0, v(x , 0) = v0(x) ≥ 0, x ∈ (0, lπ).

(8)

If ad − bc > 0, then (u∗ =
d + b

ad − bc
, v∗ =

a + c

ad − bc
) is the unique positive constant

steady state, and it is globally asymptotically stable w.r.t. the local system.

Theorem 3. Using β > 0 as bifurcation parameter,

(i) there exist an infinite sequence βn =
bcu∗v∗

λn(λn + dv∗)
satisfying βi > βi+1 > · · · > 0

such that system (8) undergoes a steady state bifurcation at β = βn;
(ii) the nonconstant steady state solutions (β, u±1 (x), v±1 (x)) bifurcating at β = β1 are
locally asymptotically stable, and they are monotone in x .

[Kishimoto-Weinberger, 1985, JDE] stable steady state of the localized system must
be constant
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Simulations

Left: mode-1 spatially nonhomogeneous decreasing steady state;
Right: mode-1 spatially nonhomogeneous increasing steady state
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How do the patterns emerge

Example 1: predator-prey model:

JU =

(
+ −
+ 0

)
, JU + JŪ =

(
− −
+ 0

)
, D =

(
d1 0
0 d2

)
.

JU + JŪ is stable, JU is unstable.
Both Hopf and steady state bifurcations are possible.

Example 2: cooperative model:

JU =

(
− +
+ 0

)
, JU + JŪ =

(
− +
+ −

)
, D =

(
β 0
0 1

)
.

JU + JŪ is stable, JU is unstable.
Steady state bifurcations are possible, but not Hopf ones.

Example 3: classical Turing instability

JU =

(
+ ±
∓ −

)
,D =

(
d1 0
0 d2

)
.

JU is stable. Both Hopf and steady state bifurcations are possible, but stable
bifurcating periodic orbits are spatially homogeneous.
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Conclusions

1 In certain reaction-diffusion models, some feedback pathways are nonlocal or
global. A particular case of such nonlocal effect is spatial average
ū = |Ω|−1

∫
Ω u. The spatial average can cause spatiotemporal pattern formation

(nonhomogeneous time-periodic solutions or steady state solutions) which do
not exist in the purely local interaction models.

2 Nonlocality induced instability allows more flexible condition on the kinetic
dynamics, and it does not require typical activator-inhibitor interaction between
the two chemical species. This broadens the range of reaction-diffusion models
for pattern formation.

3 Usually spatial heterogeneity increases the complexity of spatial patterns. Here
the mechanism of pattern formation is to add some partial spatial homogeneity.
Our result indicates the following scenarios of patterns verses level of
locality/nonlocality of underlining reactions:

Totally nonlocal system: Ut = D∆U + F (Ū, Ū, λ), no pattern, same as ODE
Partially nonlocal system: Ut = D∆U + F (U, Ū, λ), can have patterns
Totally local system: Ut = D∆U + F (U,U, λ), no pattern

Future Work:
(i) Turing-Hopf codimension-2 bifurcation in partially nonlocal system. [in preparation]
(ii) Classify all 2× 2 sign patterns for bifurcation in partially nonlocal system.
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