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First word

G. H. Hardy (1877-1947)
A mathematician, like a painter or a poet, is a maker of patterns. The
mathematician’s patterns, like the painter’s or the poet’s, must be beautiful; the ideas,
like the colours or the words, must fit together in a harmonious way.

Michael Atiyah (1929-)
The art in good mathematics, and mathematics is an art, is to identify and tackle
problems that are both interesting and solvable.
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Stability of a Stationary Solution

For a continuous-time evolution equation
du

dt
= F (λ, u), where u ∈ X (state space),

λ ∈ R, a stationary solution u∗ is locally asymptotically stable (or just stable) if for
any ε > 0, then there exists δ > 0 such that when ||u(0)− u∗||X < δ, then
||u(t)− u∗||X < ε for all t > 0 and lim

t→∞
||u(t)− u∗||X = 0. Otherwise u∗ is unstable.

Principle of Linearized Stability: If all the eigenvalues of linearized operator
DuF (λ, u∗) have negative real part, then u∗ is locally asymptotically stable.

Bifurcation: when the parameter λ changes from λ∗ − ε to λ∗ + ε, the stationary
solution u∗(λ) changes from stable to unstable; and other special solutions (stationary
solutions, periodic orbits) may emerge from the known solution (λ, u∗(λ)).

Stationary Bifurcation (transcritical/pitchfolk): if 0 is an eigenvalue of DuF (λ∗, u∗).
It generates new stationary (steady state, equilibrium) solutions.
Hopf Bifurcation: if ±ki (k > 0) is a pair of eigenvalues of DuF (λ∗, u∗). It generates
new small amplitude periodic orbits.
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Poincaré-Andronov-Hopf Bifurcation Theorem

Consider ODE x ′ = f (λ, x), λ ∈ R, x ∈ Rn, and f is smooth.
(i) Suppose that for λ near λ0 the system has a family of equilibria x0(λ).
(ii) Assume that its Jacobian matrix A(λ) = fx (λ, x0(λ)) has one pair of complex
eigenvalues µ(λ)± iω(λ), µ(λ0) = 0, ω(λ0) > 0, and all other eigenvalues of A(λ)
have non-zero real parts for all λ near λ0.

If µ′(λ0) 6= 0, then the system has a family of periodic solutions (λ(s), x(s)) for
s ∈ (0, δ) with period T (s), such that λ(s)→ λ0, T (s)→ 2π/ω(λ0), and
||x(s)− x0(λ0)|| → 0 as s → 0+.
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Poincaré-Andronov-Hopf bifurcation

Henri Poincaré (1852-1912) Aleksandr Andronov (1901-1952)
Eberhard Hopf (1902-1983)

Poincaré, H. [1894] “Les Oscillations ’Electriques” (Charles Maurain, G. Carr’e & C.
Naud, Paris).

Andronov, A. A. [1929] “Les cycles limites de Poincaré et la théorie des oscillations
auto-entretenues,” Comptes Rendus Hebdomadaires de l’Acad’emie des Sciences 189,
559-561. limit cycle in 2-D systems

E. Hopf. [1942] “Abzweigung einer periodischen Los̈ung von einer stationären eines
Differentialsystems”. Ber. Verh. Sac̈hs. Akad. Wiss. Leipzig. Math.-Nat. Kl. 95,
(1943). no. 1, 3-22. limit cycle in n-D system
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Proof of Hopf bifurcation theorem: (1) transformation

Consider ODE x ′ = f (λ, x), λ ∈ R, x ∈ Rn, and f is smooth.
Assumptions:
(i) Suppose that for λ near λ0 the system has a family of equilibria x0(λ).
(ii) Assume that its Jacobian matrix A(λ) = fx (λ, x0(λ)) has one pair of complex
eigenvalues µ(λ)± iω(λ), µ(λ0) = 0, ω(λ0) = ω0 > 0, and all other eigenvalues of
A(λ) have non-zero real parts for all λ near λ0.
(iii) µ′(λ0) 6= 0.

Preparation:
1. We can assume x0(λ) = 0 (if not we can make a change of variables:
y = x − x0(λ)), so from now we assume that f (λ, 0) = 0 for λ near λ0, and
A(λ) = fx (λ, 0).
2. A periodic solution x(t) satisfying x(t + ρ) = x(t) for a period ρ. We rescale the

time s = t/ρ. Then the equation
dx

dt
= f (λ, x) becomes

dx

ds
= ρf (λ, x), and now x(s)

satisfies x(s) = x(s + 1) for a period 1. From now we consider the equation
x ′ = ρf (λ, x), and we look for periodic solutions with period 1.
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Proof of Hopf bifurcation theorem: (2) Setup

Consider ODE x ′ = ρf (λ, x), λ ∈ R, x ∈ Rn,
Assumptions:
(i) Suppose that for λ near λ0, f (λ, 0) = 0.
(ii) Assume that its Jacobian matrix A(λ) = fx (λ, 0) has one pair of complex
eigenvalues µ(λ)± iω(λ), µ(λ0) = 0, ω(λ0) = ω0 > 0, and all other eigenvalues of
A(λ) have non-zero real parts for all λ near λ0.
(iii) µ′(λ0) 6= 0.

Define the spaces

X = {x ∈ C1(R : Rn) : x(t + 1) = x(t)}, Y = {y ∈ C(R,Rn) : y(t + 1) = y(t)}.

and a mapping F : U × V × X → Y , where λ0 ∈ U ⊂ R, ρ0 = 2π/ω0 ∈ V ⊂ R,

F (λ, ρ, x) = x ′ − ρf (λ, x).

Since the eigenvalues are complex, hence we may consider the linearized equations in

XC = X + iX = {x1 + ix2 : x1, x2 ∈ X}, YC = Y + iY .
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Proof of Hopf bifurcation theorem: (3) Linearization

Consider F : U × V × X → Y , where λ0 ∈ U ⊂ R, ρ0 = 2π/ω0 ∈ V ⊂ R,

F (λ, ρ, x) = x ′ − ρf (λ, x).

Then

Fx (λ, ρ, x)[w ] = w ′ − ρfx (λ, x)w , Fx (λ0, ρ0, 0)[w ] = w ′ −
2π

ω0
fx (λ0, 0)w .

Kernel is two-dimensional:

N (Fx (λ0, ρ0, 0)) = span {exp(2πit)v0, exp(−2πit)v0} ,

where fx (λ0, 0)v0 = iω0v0 and v0(6= 0) ∈ XC.

Range is codimensional two:

R(Fx (λ0, ρ0, 0)) = {h ∈ YC : 〈h exp(2πit), v0〉 = 〈h exp(−2πit), v0〉 = 0} ,

or more precisely h =
∑
k∈Z

hk exp(2kπit) (Fourier series), h−k = hk , h1 = h−1 = 0.
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Proof of Hopf bifurcation theorem: (4) New spaces

For

X = {x ∈ C1(R : Rn) : x(t + 1) = x(t)}, Y = {y ∈ C(R,Rn) : y(t + 1) = y(t)},

there are the space decompositions:

X = N (Fx (λ0, ρ0, 0)) + Z , Y = R(Fx (λ0, ρ0, 0)) + W ,

where Z and W are complements of N (Fx (λ0, ρ0, 0)) and R(Fx (λ0, ρ0, 0))
respectively.

Let w0 =
exp(2πit)v0 + exp(−2πit)v0

2
= cos(2πt)u0 (u0 ∈ Rn), and let

X1 = span{w0}+ Z .

We restrict F (λ, ρ, x) = x ′ − ρf (λ, x) for x ∈ X1. Then N (Fx (λ0, ρ0, 0)) = span{w0}.

Define Y1 = {y ∈ Y :
∑

k 6=1 yk exp(2kπit) + y1 cos(2πt)}. Then

F : U × V × X1 → Y1 satisfies codim(R(Fx (λ0, ρ0, 0))) = 1. Indeed
R(Fx (λ0, ρ0, 0)) = {y ∈ Y1 : y1 · x0 = 0}.
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Bifurcation from simple eigenvalue with two parameters

Theorem 7.6. [Crandall-Rabinowitz, 1971, JFA]
Let U be a neighborhood of (λ0, u0) in R× X , and let F : U → Y be a continuously
differentiable mapping such that Fλu exists and continuous in U. Assume that
F (λ, u0) = 0 for (λ, u0) ∈ U. At (λ0, u0), F satisfies

(F1) dimN (Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and
(F3) Fλu(λ0, u0)[w0] 6∈ R(Fu(λ0, u0)), where w0 ∈ N (Fu(λ0, u0)),

Let Z be any complement of N (Fu(λ0, u0)) = span{w0} in X . Then the solution set
of F (λ, u) = 0 near (λ0, u0) consists precisely of the curves u = u0 and
{(λ(s), u(s)) : s ∈ I = (−ε, ε)}, where λ : I → R, z : I → Z are continuous functions
such that u(s) = u0 + sw0 + sz(s), λ(0) = λ0, z(0) = 0.

two-parameter case. [Shearer, 1978, MPCPS] Let U be a neighborhood of (λ0, ρ0, u0)
in R× R× X , and let F : U → Y be a continuously differentiable mapping such that
Fλu and Fρu exist and continuous in U. Assume that F (λ, ρ, u0) = 0 for
(λ, ρ, u0) ∈ U. At (λ0, ρ0, u0), F satisfies

(F1) dimN (Fu(λ0, ρ0, u0)) = codimR(Fu(λ0, ρ0, u0)) = 1, and
(F3) there exists (a1, a2) ∈ R2 such that

a1Fλu(λ0, u0)[w0] + a2Fρu(λ0, ρ0, u0)[w0] 6∈ R(Fu(λ0, u0)), where w0 ∈ N (Fu(λ0, u0)),
Let Z be any complement of N (Fu(λ0, u0)) = span{w0} in X . Then the solution set
of F (λ, ρ, u) = 0 near (λ0, ρ0, u0) consists precisely of the set u = u0 and a curve
{(λ(s), ρ(s), u(s)) : s ∈ I = (−ε, ε)}, where λ, ρ : I → R, z : I → Z are continuous
functions such that u(s) = u0 + sw0 + sz(s), λ(0) = λ0, ρ(0) = ρ0, z(0) = 0.
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Proof of Hopf bifurcation theorem: (5)

For the mapping F : U × V × X1 → Y1, F (λ, ρ, x) = x ′ − ρf (λ, x), (F1) is satisfied.

Fρu(λ0, ρ0, 0)[w0] = −fx (λ0, 0)w0 = 0,
Fλu(λ0, ρ0, 0)[w0] = −ρ0fλx (λ0, 0)w0

Let fx (λ, 0)[w(λ)] = (α(λ) + iβ(λ))w(λ). By differentiating with respect to λ, we get
fλx (λ0, 0)[exp(2πit)v0] =
(α′(λ0) + iβ′(λ0)) exp(2πit)v0 − [fx (λ0, 0)w ′(λ0)− (α(λ0) + iβ(λ0))w ′(λ0)]. Then
fλx (λ0, 0)w0 = α′(λ0)w0 + z for some z ∈ R(Fu(λ0, ρ0, 0)), hence
fλx (λ0, 0)w0 6∈ R(Fu(λ0, ρ0, 0)) since α′(λ0) 6= 0.

From the bifurcation from simple eigenvalue with two-parameter theorem, all
nontrivial solutions of F (λ, ρ, x) = 0 are on a curve {(λ(s), ρ(s), x(s)) : |s| < δ}.

In this way, we prove the periodic solutions in X1 are all on the curve
{(λ(s), ρ(s), x(s)) : |s| < δ}. Note that with different choice of X1 and Y1, different
periodic solutions can be obtained, but they are only the same as the ones in X1 after
a time phase shift.
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Dynamical system approach

Consider ODE x ′ = ρf (λ, x), λ ∈ R, x ∈ Rn,
Assumptions:
(i) Suppose that for λ near λ0, f (λ, 0) = 0.
(ii) Assume that its Jacobian matrix A(λ) = fx (λ, 0) has one pair of complex
eigenvalues µ(λ)± iω(λ), µ(λ0) = 0, ω(λ0) = ω0 > 0, and all other eigenvalues of
A(λ) have non-zero real parts for all λ near λ0.
(iii) µ′(λ0) 6= 0.

More non-degeneracy condition: l1(0) 6= 0 (where l1(α) is the first Lyapunov
coefficient), then according to the Center Manifold Theorem, there is a family of
smooth two-dimensional invariant manifolds Wα

c near the origin. The n-dimensional
system restricted on Wα

c is two-dimensional.

Moreover, under the non-degeneracy conditions, the n-dimensional system is locally
topologically equivalent near the origin to the suspension of the normal form by the
standard saddle, i.e.
ẏ1 = βy1 − y2 + σy1(y2

1 + y2
2 ), ẏ2 = y1 + βy2 + σy2(y2

1 + y2
2 ), (center manifold)

ẏ s = −y s , (stable manifold), ẏu = +yu (unstable manifold)

Whether Andronov-Hopf bifurcation is subcritical or supercritical is determined by σ,
which is the sign of the “first Lyapunov coefficient” l1(0) of the dynamical system
near the equilibrium.
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First Lyapunov coefficient

Write the Taylor expansion of f (x , 0) at x = 0 as

f (x , 0) = A0x +
1

2
B(x , x) +

1

6
C(x , x , x) + O(‖x‖4),

where B(x , y) and C(x , y , z) are the multilinear functions with components

Bj (x , y) =
n∑

k,l=1

∂2fj (ξ, 0)

∂ξk∂ξl

∣∣∣∣
ξ=0

xkyl ,

Cj (x , y , z) =
n∑

k,l,m=1

∂3fj (ξ, 0)

∂ξk∂ξl∂ξm

∣∣∣∣
ξ=0

xkylzm ,

where j = 1, 2, . . . , n. Let q ∈ Cn be a complex eigenvector of A0 corresponding to the
eigenvalue iω0: A0q = iω0q. Introduce also the adjoint eigenvector p ∈ Cn:
AT

0 p = −iω0p, 〈p, q〉 = 1. Here 〈p, q〉 = p̄Tq is the inner product in Cn. Then (see,
for example, [Kuznetsov, 2004, book])

l1(0) =
1

2ω0
Re
[
〈p,C(q, q, q̄)〉 − 2〈p,B(q,A−1

0 B(q, q̄))〉+ 〈p,B(q̄, (2iω0In − A0)−1B(q, q))〉
]
,

where In is the unit n × n matrix. Note that the value (but not the sign) of l1(0)
depends on the scaling of the eigenvector q. The normalization 〈q, q〉 = 1 is one of
the options to remove this ambiguity.
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Rosenzweig-MacArthur model

du

dt
= u

(
1−

u

k

)
−

muv

1 + u
,

dv

dt
= −θv +

muv

1 + u

Nullcline: u = 0, v =
(k − u)(1 + u)

m
; v = 0, θ =

mu

1 + u
.

Solving θ =
mu

1 + u
, one have u = λ ≡

θ

m − θ
.

Equilibria: (0, 0), (k, 0), (λ, vλ) where vλ =
(k − λ)(1 + λ)

m
We take λ as a bifurcation parameter

Case 1: λ ≥ k: (k, 0) is globally asymptotically stable
Case 2: (k − 1)/2 < λ < k: (k, 0) is a saddle, and (λ, vλ) is a globally stable
equilibrium
Case 3: 0 < λ < (k − 1)/2: (k, 0) is a saddle, and (λ, vλ) is an unstable equilibrium
(λ = λ0 = (k − 1)/2 is a Hopf bifurcation point)

A0 = L0(λ0) :=


λ0(k − 1− 2λ0)

k(1 + λ)
−θ

k − λ0

k(1 + λ0)
0

 .



ODE Proof Normal Form ODE apps Global Infinite-D PDE Apps CIMA Reaction

Normal form (1)

[Yi-Wei-Shi, 2009, JDE]
Eigenvector: A0q = iω0q, A∗0q

∗ = −iωq∗, 〈q, q∗〉 = 1.

q :=

(
a0

b0

)
=

(
1

−iω0/θ

)
, and q∗ :=

(
a∗0
b∗0

)
=

(
1/2

−θi/(2ω0)

)
,

where ω0 =
√
θ/k.

f (λ, u, v) = (u + λ)

(
1−

u + λ

k

)
−

m(u + λ)(v + vλ)

1 + u + λ
,

g(λ, u, v) = −θ(v + vλ) +
m(u + λ)(v + vλ)

1 + u + λ
,

(1)

then we have,

c0 =
−2(k − 1)2 + 8iω0k

k(k − 1)(k + 1)
, d0 = −

4(k − 1) + 8iω0k

k(k − 1)(k + 1)
,

e0 =
2(1− k)

k(k + 1)
, f0 = −

4

k(k + 1)
, g0 = −h0 = −

24(k − 1) + 16iω0k

k(k − 1)(k + 1)2
.

(2)
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Normal form (2)

and,

〈q∗,Qqq〉 =
4θω0k − (k − 1)2ω0 + 2θ(3− k)i

k(k − 1)(k + 1)ω0
,

〈q∗,Qqq〉 =
(1− k)ω0 − 2θi

k(k + 1)ω0
,

〈q∗,Qqq〉 = −
(k − 1)2ω0 + 2θkω0 − 4θki

k(k − 1)(k + 1)ω0
,

〈q∗,Cqqq〉 =
−12(k − 1)ω0 − 8θkω0 + 4θ(3k − 5)i

k(k − 1)(k + 1)2ω0
.

(3)

H20 =

(
c0

d0

)
− 〈q∗,Qqq〉

(
a0

b0

)
− 〈q∗,Qqq〉

(
a0

b0

)
= 0,

H11 =

(
e0

f0

)
− 〈q∗,Qqq〉

(
a0

b0

)
− 〈q∗,Qqq〉

(
a0

b0

)
= 0,

(4)

which implies that w20 = w11 = 0. So

〈q∗,Qw11,q〉 = 〈q∗,Qw20,q〉 = 0. (5)
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Normal form (3)

Therefore

Re(c1(λ0)) =Re

{
i

2ω0
〈q∗,Qqq〉 · 〈q∗,Qqq〉+

1

2
〈q∗,Cq,q,q〉

}
=
θ(4θk − (k − 1)2 − (3− k)(1− k))

k2(k − 1)(k + 1)2ω2
0

+
6ω0(1− k)− 4θω0k

k(k − 1)(k + 1)2ω0

=
θ(4θk − (k − 1)2 − (3− k)(1− k))

k2(k − 1)(k + 1)2ω2
0

−
6(k − 1) + 4θk

k(k − 1)(k + 1)2

=
4θk − (k − 1)2 − (3− k)(1− k)− 6(k − 1)− 4θk

k(k − 1)(k + 1)2

=−
2(k − 1)(k + 1)

k(k − 1)(k + 1)2
= −

2

k(k + 1)
< 0

(6)

The bifurcation is supercritical(resp. subcritical) if

1

α′(λ0)
Re(c1(λ0)) < 0(resp. > 0); (7)

see also [Kuznetsov, 2004, book]
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Higher dimension

ODE model:
dy

dt
= f (λ, y), y ∈ Rn, f : R× Rn → Rn

Equilibrium: y = y0 so that f (λ0, y0) = 0

Jacobian Matrix: J = fy (λ0, y0) is an n × n matrix

Characteristic equation:
P(λ) = Det(λI − J) = λn + a1λ

n−1 + a2λ
n−2 + · · ·+ an−1λ+ an

Routh-Hurwitz criterion: complicated for general n

n = 1: λ+ a1 = 0, a1 > 0

n = 2: λ2 + a1λ+ a2 = 0, a1 > 0, a2 > 0 Trace-determinant plane

n = 3: λ3 + a1λ
2 + a2λ+ a3 = 0, a1 > 0, a2 >

a3

a1
, a3 > 0

n = 4: λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0, a1 > 0, a2 >
a2

3 + a2
1a4

a1a3
, a3 > 0, a4 > 0

n ≥ 5: check books
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3D system

n = 3: λ3 + a1λ
2 + a2λ+ a3 = 0, a1 > 0, a2 >

a3

a1
, a3 > 0

Hopf bifurcation point: a1 > 0, a3 > 0, a1a2 − a3 = 0.
Eigenvalues: λ1 = βi , λ2 = −βi , and λ3 = −α (for α, β > 0) Then

a1 = −(λ1+λ2+λ3) = α > 0, a2 = λ1λ2+λ1λ3+λ2λ3 = β2 > 0, a3 = −λ1λ2λ3 = αβ2 > 0.

And a1a2 − a3 = 0.

Example: (Lorenz system) x ′ = σ(y − x), y ′ = rx − y − xz, z ′ = xy − bz.

Basic dynamics:
equilibria: C0 = (0, 0, 0), C± = (±

√
b(r − 1),±

√
b(r − 1), r − 1).

global stability: when 0 < r < 1, C0 is globally stable

Jacobian:

 −σ σ 0
r − z −1 −x
y x −b

, characteristic equation at C±:

λ3 + (σ + b + 1)λ2 + (r + σ)bλ+ 2bσ(r − 1) = 0

Hopf bifurcation: a1 = σ + b + 1 > 0, a3 = 2bσ(r − 1) > 0,
a1a2 − a3 = (σ + b + 1)(r + σ)b − 2bσ(r − 1) = 0

Hopf bifurcation point: r =
σ(σ + b + 3)

σ − b − 1
. It is a subcritical bifurcation.
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Global bifurcation of periodic orbits

Consider ODE x ′ = f (λ, x), λ ∈ R, x ∈ Rn, and f is smooth.
Assumptions:
(i) Suppose that for λ near λ0 the system has a family of equilibria x0(λ).
(ii) Assume that its Jacobian matrix A(λ) = fx (λ, x0(λ)) has one pair of complex
eigenvalues µ(λ)± iω(λ), µ(λ0) = 0, ω(λ0) = ω0 > 0, and all other eigenvalues of
A(λ) have non-zero real parts for all λ near λ0.
(iii) µ′(λ0) 6= 0.

Let x(λ, t; x0) be the solution of the equation with initial condition x(λ, 0; x0) = x0.
We say (λ, x0) is stationary if x(λ, t; x0) = x0 for all t ≥ 0.
We say (λ, x0) is periodic if it is not stationary, and there exists T > 0 such that
x(λ,T ; x0) = x0.
If (λ, x0) is periodic, then all positive T > 0 such that x(λ,T ; x0) = x0 are the
periods. The smallest positive period is the least period.

Define

Σ = {(λ,T , x0) ∈ R× (0,∞)× Rn : x(λ,T ; x0) = x0 and (λ, x0) is periodic}.
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Global bifurcation of periodic orbits

[Alexander-Yorke, 1978, AJM]
Consider ODE x ′ = f (λ, x), λ ∈ R, x ∈ Rn, and f is smooth.
Assumptions:
(i) Suppose that for λ near λ0 the system has a family of equilibria x0(λ).
(ii) Assume that its Jacobian matrix A(λ) = fx (λ, x0(λ)) has one pair of complex
eigenvalues µ(λ)± iω(λ), µ(λ0) = 0, ω(λ0) = ω0 > 0, and all other eigenvalues of
A(λ) have non-zero real parts for all λ near λ0.
(iii) µ′(λ0) 6= 0.

Define

S = {(λ,T , x0) ∈ R× (0,∞)× Rn : x(λ,T ; x0) = x0 and (λ, x0) is periodic}.

1 There exists connected component S0 of S ∪ {y0 ≡ (λ0, 2π/ω0, x0(λ0))}
containing y0 and at least one periodic solution. Near y0, every
y = (λ,T , x0)(6= y0) ∈ S0 is periodic with the least period T .

2 One or both of the following are satisfied: (i) S0 is not contained in any compact
subset of R× (0,∞)× Rn; (ii) there exists a point (λ∗,T∗, x0∗) ∈ S0\S0.

3 For any (λ∗,T∗, x0∗) ∈ S\S, (λ∗, x0∗) is stationary. For any ε > 0, there is a
neighborhood Uε of (λ∗,T∗, x0∗) such that for any (λ,T , x0) ∈ Uε ∩ S , all
points of the orbit x(λ, t; x0) are of distance less than ε from x0∗.
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Remarks

1 The assumptions (ii) and (iii) can be generalized to: there are k pairs of purely
imaginary eigenvalues of A(λ0) in form {iβjω0 : 1 ≤ j ≤ k} with
1 ≤ β1 ≤ β2 ≤ · · · ≤ βk , and the change of the number of such eigenvalues
with positive real part from λ = λ0 − ε to λ = λ0 + ε is odd.

2 The proofs of the result use homotopy theory or Fuller index or other
topological invariants.

3 The theorem states that either the connected component S0 contains another
stationary solution, or it is unbounded in the sense that

sup
(λ,T ,x0)∈S0,t∈R

(
|λ|+ |T |+ |T−1|+ |x(λ, t; x0)|

)
=∞.

4 If (λ,T , x0) ∈ S0, then T is not necessarily the least period of the periodic
solution x(λ,T ; x0). If iω0 is an simple simple eigenvalue of A(λ0), then near
y0, T is the least period. Note that if T is a period, so is kT for k ∈ N, so the
periods are always unbounded. The main point of the theorem is the periods
can be unbounded continuously.

5 The notation x(λ, t; x0) is a periodic solution, and {x(λ, t; x0) : t ∈ R} ia a
periodic orbit. It is clear that for any xt = x(λ, t; x0), x(λ, t; xt) is also a
periodic solution, but it has the same orbit as x(λ, t; x0). For a fixed λ, the
periodic solution is never unique, but the periodic orbit may be unique. Hence it
is wrong to say “there exists at least two periodic solutions” in a theorem, and
you should say “there exists at least two periodic orbits”.
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Example

Rosenzweig-MacArthur model
du

dt
= u

(
1−

u

k

)
−

muv

1 + u
,

dv

dt
= −θv +

muv

1 + u
.

Parameter: λ ≡
θ

m − θ
.

Equilibria: (0, 0), (k, 0), (λ, vλ) where vλ =
(k − λ)(1 + λ)

m

Case 1: λ ≥ k: (k, 0) is globally asymptotically stable
Case 2: (k − 1)/2 < λ < k: (λ, vλ) is a globally stable equilibrium
Case 3: 0 < λ < (k − 1)/2: (k, 0) and (λ, vλ) are both unstable
(λ = λ0 = (k − 1)/2 is a Hopf bifurcation point)

There exists a branch of periodic orbits S0 = {(λ,T , x0) : 0 < λ < (k − 1)/2}.
One can show that |x0| is bounded for S0, so T is unbounded when λ→ 0. In this
case, the limit of the orbits {x(λ, t; x0) : t ∈ R} when λ→ 0 is not an orbit.
[Hsu-Shi, 2009, DCDS-B]

Sometimes if T →∞ as λ→ λ∗, the limit of the orbits {x(λ, t; x0) : t ∈ R} when
λ→ λ∗ is a homoclinic orbit or a heteroclinic loop of the system.
[Wang-Shi-Wei, 2011, JMB]
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Abstract version: Hopf bifurcation theorem

[Crandall-Rabinowitz, ARMA, 1977]
Consider an evolution equation in Banach space X :

du

dt
+ Lu + f (µ, u) = 0. (8)

Here X is a Banach space, and XC = X + iX is the complexification of X ; L : X → X
is a linear operator and it can be extended to XC naturally. The spectral set σ(L) ⊆ C,
and λ ∈ σ(L) if and only if λ̄ ∈ σ(L).

Conditions on L (HL):

1 −L is the infinitesimal generator of a strongly continuous semigroup T (t) on X ;

2 T (t) is a holomorphic (analytic) semigroup on XC;

3 (λI − L)−1 is compact for λ 6∈ σ(L);

4 i is a simple eigenvalue of L (with eigenvector w0 6= 0);

5 ni 6∈ σ(L) for n = 0 and n = 2, 3, · · · .
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Abstract version: Hopf bifurcation theorem

Conditions on f : (Hf)

1 There exists α ∈ (0, 1) and a neighborhood U of (µ, u) = (0, 0) in R× Xα such
that f ∈ C2(U,X );

2 f (µ, 0) = 0 for (µ, 0) ∈ U and fu(0, 0) = 0.

(HL) and (Hf) imply that there exists C1 functions (β(µ), v(µ)) for µ ∈ (−δ, δ) such
that

[L + fu(µ, 0)]v(µ) = β(µ)v(µ), β(0) = i , v(0) = w0.

Condition on β: (Hβ)

1 Re β′(0) 6= 0.

Rescaling τ = ρ−1t: change the period of periodic orbit to a parameter

du

dτ
+ ρLu + ρf (µ, u) = 0. (9)

Looking for a period-1 periodic orbit for the rescaled equation.

Convert it to integral equation u(τ) is a solution to (9) for τ ∈ [0, r ] if and only if, for
τ ∈ [0, r ],

F (ρ, µ, u) ≡ u(τ)− T (ρτ)u(0) + ρ

∫ τ

0
T (ρ(τ − ξ))f (µ, u(ξ))dξ = 0.
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Abstract version: Hopf bifurcation theorem

Let C2π(R,Xα) be the set of 2π-periodic continuous functions, and let
C0([0, 2π],Xα) = {h : [0, 2π]→ Xα, h(0) = 0, h is continuous }. Then

F (ρ, µ, u) ≡ u(τ)− T (ρτ)u(0) + ρ

∫ τ

0
T (ρ(τ − ξ))f (µ, u(ξ))dξ

is well-defined so that F : R× R× C2π(R,Xα)→ C0([0, 2π],Xα).

Theorem. Let (HL), (Hf) and (Hβ) be satisfied. Then there exist ε, η > 0 and C1

functions (ρ, µ, u) : (−η, η)→ R× R× C2π(R,Xα) such that

1 F (ρ(s), µ(s), u(s)) = 0 for |s| < η.

2 µ(0) = 0, u(0) = 0, ρ(0) = 1 and u(s) 6= 0 for 0 < |s| < η.

3 If (µ1, u1) ∈ R× C(R,Xα) is a solution of (8) with period 2πρ1, where
|ρ1 − 1| < ε, |µ1| < ε, and ||u1||α < ε, then there exist s ∈ [0, η) and
θ ∈ [0, 2π) such that u(ρ1τ) = u(s)(τ + θ) for τ ∈ R.

Note: There is a relation between the solutions with s ∈ (0, η) and s ∈ (−η, 0), and
they are the same orbit with different phases.
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Reaction-Diffusion systems

[Yi-Wei-Shi, 2009, JDE]
A general reaction-diffusion system subject to Neumann boundary condition on spatial
domain Ω = (0, `π).


ut − d1uxx = f (λ, u, v), x ∈ (0, `π), t > 0,

vt − d2vxx = g(λ, u, v), x ∈ (0, `π), t > 0,

ux (0, t) = vx (0, t) = 0, ux (`π, t) = vx (`π, t) = 0, t > 0,

u(x , 0) = u0(x), v(x , 0) = v0(x), x ∈ (0, `π),

(10)

where d1, d2, λ ∈ R+, f , g : R× R2 → R are C k (k ≥ 3) with
f (λ, 0, 0) = g(λ, 0, 0) = 0. Define the real-valued Sobolev space

X := {(u, v) ∈ H2(0, `π)× H2(0, `π)|(ux , vx )|x=0, `π = 0}. (11)

The linearized operator of the steady state system of (10) evaluated at (λ, 0, 0) is,

L(λ) :=

 d1
∂2

∂x2
+ A(λ) B(λ)

C(λ) d2
∂2

∂x2
+ D(λ)

 , (12)

with the domain DL(λ) = XC, where A(λ) = fu(λ, 0, 0) ,B(λ) = fv (λ, 0, 0),
C(λ) = gu(λ, 0, 0), and D(λ) = gv (λ, 0, 0).
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Hopf bifurcations

We assume that for some λ0 ∈ R, the following condition holds:
(H1): There exists a neighborhood O of λ0 such that for λ ∈ O, L(λ) has a pair of
complex, simple, conjugate eigenvalues α(λ)± iω(λ), continuously differentiable in λ,
with α(λ0) = 0, ω(λ0) = ω0 > 0, and α′(λ0) 6= 0; all other eigenvalues of L(λ) have
non-zero real parts for λ ∈ O.

Theorem. Suppose that the assumption (H1) holds. Then there is a family of periodic
orbits S = {(λ(s),T (s), u(s, x , t), v(s, x , t)) : 0 < s < δ} with
λ(s),T (s), u(s, ·, ·), v(s, ·, ·) differentiable in s,
(u(s, x , t + T (s)), v(s, x , t + T (s))) = (u(s, x , t), v(s, x , t)), and

lim
s→0

λ(s) = λ0, lim
s→∞

T (s) =
2π

ω0
, lim

s→0
|u(s, x , t)|+ |v(s, x , t)| = 0,

uniformly for x ∈ [0, `π] and t ∈ R. All periodic orbits of the system are time phase
shifts of the ones on S .

Normal form calculations: [Yi-Wei-Shi, 2009, JDE]
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Turing patterns in real experiment

The first experimental evidence of Turing pattern was observed in 1990, nearly
40 years after Turing’s prediction, by the Bordeaux group in France, on the
chlorite-iodide-malonic acid-starch (CIMA) reaction in an open unstirred gel
reactor. This observation represents a significant breakthrough for one of the
most fundamental ideas in morphogenesis and biological pattern formation.

[Castets, et.al., 1990] Experimental evidence of a sustained Turing-type

equilibrium chemical pattern. Phys. Rev. Lett. 64.
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Modeling for for CIMA reaction

[Lengyel-Epstein, 1991] Modeling of Turing Structures in the
Chlorite-Iodide-Malonic Acid-Starch Reaction System. Science.

MA + I2 → IMA + I− + H+,
CIO2 + I− → CIO2 + (1/2)I2,
CIO2 + 4I− + 4H+ → CI− + 2I2 + 2H2O

[CIO2], [I2] and [MA] varying slowly, assumed to be constant
Let I− = X , CIO2 = Y and I2 = A. Then the reaction becomes

A
k1−→ X , X

k2−→ Y , 4X + Y
k3−→ P

Reaction rates k1, k2 are constants, and k3 is proportional to
[X ] · [Y ]

u + [X ]2
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Reaction-diffusion system for CIMA reaction

Nondimensionalized reaction-diffusion system:
ut = 4u + a− u − 4uv

1 + u2
, x ∈ Ω, t > 0,

vt = σ[c∆v + b(u − uv

1 + u2
)], x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) > 0, v(x , 0) = v0(x) > 0, x ∈ Ω,

Here [I−] = u(x , t), [CIO2] = v(x , t), x ∈ Ω (reactor)
no flux boundary condition: closed chemical reaction
a, b, σ, c > 0. Key parameter: a > 0 (the feeding rate)
[Lengyel-Epstein, 1991]

Change of parameters:

d =
c

b
, m = σb, α =

a

5
,

New equation: 
ut = 4u + 5α− u − 4uv

1 + u2
, x ∈ Ω, t > 0,

vt = m

(
d∆v + u − uv

1 + u2

)
, x ∈ Ω, t > 0.
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Turing bifurcation in 1-D problem

For simplicity, we assume that n = 1 and Ω = (0, `π).


ut = uxx + λf (u, v), x ∈ (0, `π), t > 0,

vt = dvxx + λg(u, v), x ∈ (0, `π), t > 0,

ux(t, 0) = ux(t, `π) = vx(t, 0) = vx(t, `π) = 0, t > 0,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ (0, `π).

Equilibrium point: f (u0, v0) = g(u0, v0) = 0

Linearized equation:

L

(
φ
ψ

)
=

(
φxx

dψxx

)
+ λ

(
fu fv
gu gv

)(
φ
ψ

)
Condition for Turing instability: fu < 0, gv > 0, 0 < d < 1,

0 < d <
λ[gvk2 − λD1]

k2(k2 − λfu)
≡ dk(λ) (bifurcation point)
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Turing bifurcation in CIMA model



ut = uxx + 5α− u − 4uv

1 + u2
, x ∈ (0, `π), t > 0,

vt = m

(
dvxx + u − uv

1 + u2

)
, x ∈ (0, `π), t > 0,

ux(x , t) = vx(x , t) = 0, x = 0, `π, t > 0,

u(x , 0) = u0(x), v(x , 0) = v0(x), x ∈ (0, `π),

(13)

Constant equilibrium: (u∗, v∗) = (α, 1 + α2)

Jacobian at (u∗, v∗): J =
1

1 + α2

(
3α2 − 5 −4α

2α2 −α

)
.

Assume 0 < 3α2 − 5 < α (or 1.291 < α < 1.468)

fu > 0, gv < 0, D1 = fugv − fvgu > 0 and fu + gv < 0.

Bifurcation points: dj =
α

1 + α2
· 5 + λj

λj(f0 − λj)
,

where f0 =
3α2 − 5

1 + α2
, and λj = j2/`2.

[Ni-Tang, 2005] also true for higher dimensions
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Global Turing Bifurcation for CIMA reaction

[Ni-Tang, 2005] Trans. Amer. Math. Soc.:
(A) For d > 0 small, (u∗, v∗) is the only steady state solution;
(B) All non-negative steady state solution satisfies 0 < u(x) < 5α,
0 < v(x) < 1 + 25α2.

[Jang-Ni-Tang, 2004] J. Dynam. Diff. Equa.:
(C) Each connected component bifurcated from (dj , u∗, v∗) is unbounded in the
space of (d , u, v), and its projection over d-axis covers (dj ,∞).
(D) For each d > min{dj} and d 6= dk , there exists a non-constant steady state
solution.

Their results are only for steady state solutions.

(i) What are the dynamical behavior of the solutions?
(ii) What about the oscillatory dynamics?

(iii) What is the impact of the feeding rate α > 0? (Turing instability shows

the impact of the diffusion coefficient d > 0)
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ODE Dynamics

Kinetic equation: 
ut = 5α− u − 4uv

1 + u2
, t > 0,

vt = m

(
u − uv

1 + u2

)
, t > 0,

Equilibrium: (u∗, v∗) = (α, 1 + α2)

(i) For α < α0 =
m +

√
m2 + 60

6
, (u∗, v∗) is locally stable;

(ii) For α > α0, (u∗, v∗) is locally unstable, and the system has a periodic orbit
(α0 is a Hopf bifurcation point);
(iii) For α <

√
27/5 ≈ 1.0392, (u∗, v∗) is globally asymptotically stable (even

for R-D system in higher dimensional domains)

Comparison of bifurcation points:√
27

5
≈ 1.0392 <

√
5

3
≈ 1.291 <

m +
√

m2 + 60

6
(if m > 0)
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Limit cycle generated from Hopf bifurcation
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Here m = 2, α0 = 5/3 ≈ 1.667. Left: α = 1.69; Right: α = 6.

Top: phase portraits; Bottom: solution curves (solid curve u(t), dotted curve:

v(t)).
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Multiple periodic orbits for ODE

 ! " # $ %  % ! %  !  &  "  '  #  (  $  )  

 ! " # $ %  % ! %  !  &  "  '  #  (  $  )  

u′ = 5α− u − 4uv

1 + u2
, v ′ = m

(
u − uv

1 + u2

)
.

Hopf bifurcation point: α0 = (
√

m2 + 60 + m)/6
supercritical if 0 < m < M0, and subcritical if m > M0

M0 =

√
19
√

769− 147

2
≈ 9.7453.

Example: m = 20, Hopf bifurcation point α0 = 6.908 (subcritical)
Left: α = 6.90, Right: α = 6.73

(Open Q: how to prove unique or exactly 2 periodic orbits?)
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Stability of (u∗, v∗) w.r.t. R-D system

Linearized operator

L(α) :=

 ∂2

∂x2
+

3α2 − 5

1 + α2
− 4α

1 + α2

2mα2

1 + α2
md

∂2

∂x2
− mα

1 + α2

 .

From Fourier expansion, the eigenvalues of L(α) are the ones of

Ln(α) :=

 −n2

`2
+

3α2 − 5

1 + α2
− 4α

1 + α2

2mα2

1 + α2
−md

n2

`2
− mα

1 + α2

 , n = 0, 1, 2, · · · .

The characteristic equation of Ln(α) is

µ2 − µTn + Dn = 0, n = 0, 1, 2, · · · ,
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Stability of (u∗, v∗) w.r.t. R-D system

Tn(α) :=
3α2 − 5−mα

1 + α2
− n2

`2
(1 + md),

Dn(α) :=m

[
5α

1 + α2
− n2

`2

(
d(3α2 − 5)− α

1 + α2

)
+

n4

`4
d

]
,

Stable: if all Tn < 0 and Dn > 0, and unstable otherwise
Tn = 0: possible Hopf bifurcation occurs
Dn = 0: possible steady state bifurcation (pitchfork) occurs

T0 = 0 (3α2 − 5−mα = 0): bifurcation of spatially constant periodic orbit
Dn = 0 (α = 0): bifurcation of spatially constant steady state

Other bifurcations: We use α > 0 as bifurcation parameter.
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Spatial Hopf Bifurcation

[Jin-Shi-Wei-Yi, 2013, RMJM]: For any n ∈ N, m > 0, if ` >
√

2/3n, then
there exists d∗ = d∗(m, `, n) > 0 such that when 0 < d < d∗, there exists n + 1
points αH

j = αH
j (d ,m, `), 0 ≤ j ≤ n, satisfying

0 < αH
0 < αH

1 < αH
2 < · · · < αH

n <∞;

At each α = αH
j , the system has a Hopf bifurcation, and the bifurcating

periodic solutions near (α, u, v) = (αH
j , α

H
j , 1 + (αH

j )2) can be parameterized as
(α(s), u(s), v(s)) so that α(s) = αH

j + o(s),u(s)(x , t) = αH
j + s

(
ane2πit/T (s) + ane−2πit/T (s)

)
cos

n

`
x + o(s),

v(s)(x , t) = 1 + (αH
j )2 + s

(
bne2πit/T (s) + bne−2πit/T (s)

)
cos

n

`
x + o(s).

[Ni-Tang, 2005]: when d small, there is only the constant steady state.
⇒ when d small and α large, oscillatory patterns dominate.
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Steady state bifurcation

[Jin-Shi-Wei-Yi]: For any d > 0, if ˜̀n < ` < ˜̀n+1 for some n ∈ N and ` is not in
a countable subset of R+, then there exists n points αS

j = αS
j (d , `), 1 ≤ j ≤ n,

satisfying
α∗ < αS

1 < αS
2 < · · · < αS

n <∞,
and α = αS

n is a bifurcation point for steady state solutions.

(i) There exists a C∞ smooth curve Γj of steady states bifurcating from
(α, u, v) = (αS

j , uαS
j
, vαS

j
), with Γj contained in a global branch Cj of the

solution set, and near bifurcation point, the solutions on the curve Γj has
the form uj(s) = αS

j + saj cos(kjx/`) + o(s),
vj(s) = 1 + (αS

j )2 + sbj cos(kjx/`) + o(s) for some kj ∈ N;

(ii) Each Cj is unbounded, that is, the projection of Cj on the α-axis contains
(αS

j ,∞).

⇒ when α > αS
1 , and α 6= αS

i , then the system has a non-constant steady state

solution.
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Global Bifurcation picture

(i) If α < 1.0392, (u∗, v∗) is globally asymptotically stable;

(ii) If 1.0392 < α < 1.2910, (u∗, v∗) is locally asymptotically stable;

(iii) If 1.2910 < α < (
√

m2 + 60 + m)/6, it is Turing instability zone,
bifurcation of non-constant steady states, also possible backward Hopf
bifurcation;

(iv) If α > (
√

m2 + 60 + m)/6, then many intervening Hopf and steady
bifurcations occur as α→∞.

Hopf bifurcation occurs not only when d is small, but also any d > 0, but m is
small.
Steady state bifurcation also occurs for all d > 0 (so not necessarily Turing
type).
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Global Bifurcation diagram
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Intersection of green and red curves: Steady state bifurcation points
Intersection of blue and red curves: Hopf bifurcation points

Left:Hopf bifurcation first; Right: Steady state bifurcation first
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Spatial non-homogenous periodic solutions

ut = uxx + 5α− u − 4uv

1 + u2
, vt = m

(
dvxx + u − uv

1 + u2

)
,

m = 20, primary Hopf bifurcation point α = 6.908 (subcritical)
α = 6.90, u0(x) = 6 + 0.5 cos(2x/5), v0(x) = 37 + 0.5 cos(2x/5)
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Bifurcation guided numerics

(A) to a constant equilibrium; (B) to a non-constant equilibrium
(C) to a (spatial)-constant periodic solution;
(D) to a spatial-non-constant periodic solution
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Discrete R-D Model

If the spatial domain is “2 points”, the model is in a form of 4-D ODE system:
u′ = F (u, v) + d1(w − u),

v ′ = mG(u, v) + d2m(x − v),

w ′ = F (w , x)− d1(w − u),

x ′ = mG(w , x)− d2m(x − v),

where

F (u, v) = 5α− u − 4uv

1 + u2
, G(u, v) = u − uv

1 + u2
.

where d1, d2 > 0 are the diffusion rates. This is a discrete reaction-diffusion
system, or a coupled reaction system.

[Lengyel-Epstein, 1991, Chaos]

Numerical bifurcation software: Auto, MatCont
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Numerical Bifurcation Diagram with MatCont
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Parameters: m = 10, d1 = 0.1, d2 = 1,
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More numerical simulations
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Parameters: m = 10, d1 = 0.1, d2 = 1
(upper left) α = 1.8; (upper right) α = 2; (lower left) α = 5; (lower right)
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Remarks

1 The result for (semilinear) reaction-diffusion systems can be extended to
quasilinear systems with cross-diffusion, self-diffusion, chemotaxis.
[Liu-Shi-Wang, 2013, DCDSB]
[Amann, 1991, book chapter] [Da Prado-Lunardi, 1985, AIHP] [Simonett, 1995,
DIE]

2 The Hopf bifurcation from non-constant equilibria are much difficult to obtain
since the linearized operator cannot be decomposed with Fourier series.

3 The stability of the bifurcating periodic orbits are difficult to analyze except near
the Hopf bifurcation points.

4 The Hopf bifurcation theorem is also extended to delay differential equations
(see Lecture 6), and delayed reaction-diffusion equations (see Lecture 6).

5 The uniqueness of limit cycle is difficult in general.
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