Motivation

MICO model

Let $Q \subseteq \mathbb{R}^{n+d}$ be a compact convex set and $f : \mathbb{R}^{n+d} \rightarrow \mathbb{R}$ a convex function.

\[
\begin{align*}
\min & \quad f(x, y) \\
\text{s.t.} & \quad (x, y) \in Q, \\
& \quad x \in \mathbb{Z}^d, \ y \in \mathbb{R}^n.
\end{align*}
\]
Motivation

MICO model
Let $Q \subseteq \mathbb{R}^{n+d}$ be a compact convex set and $f : \mathbb{R}^{n+d} \rightarrow \mathbb{R}$ a convex function.

$$\min f(x, y)$$

s.t. $(x, y) \in Q, x \in \mathbb{Z}^d, y \in \mathbb{R}^n$.

Why study this model?
- (MILP) and (CO) are about to become a technology.
- (MICO) seems to be the next natural step.
- Optimization over continuous relaxation is “tractable”.
Motivation

MICO model

Let $Q \subseteq \mathbb{R}^{n+d}$ be a compact convex set and $f : \mathbb{R}^{n+d} \rightarrow \mathbb{R}$ a convex function.

$$\begin{align*}
\min & \quad f(x, y) \\
\text{s.t.} & \quad (x, y) \in Q, \\
& \quad x \in \mathbb{Z}^d, \ y \in \mathbb{R}^n.
\end{align*}$$

Why study this model?

- (MILP) and (CO) are about to become a technology.
- (MICO) seems to be the next natural step.
- Optimization over continuous relaxation is “tractable”.

What do we aim at?

- Algorithmic schemes amenable to an analysis.
- Understand structural properties such as optimality conditions.
Motivation

MICO model

Let \(Q \subseteq \mathbb{R}^{n+d} \) be a compact convex set and \(f : \mathbb{R}^{n+d} \to \mathbb{R} \) a convex function.

\[
\min \ f(x, y) \\
\text{s.t.} \ (x, y) \in Q, \\
x \in \mathbb{Z}^d, \ y \in \mathbb{R}^n.
\]

The central question

Can we follow algorithmic ideas in CO and adapt it to the mixed integer setting?

Why study this model?

- (MILP) and (CO) are about to become a technology.
- (MICO) seems to be the next natural step.
- Optimization over continuous relaxation is “tractable”.

What do we aim at?

- Algorithmic schemes amenable to an analysis.
- Understand structural properties such as optimality conditions.
For convex g_i presented by a first order oracle, let

$$K = \{ x \mid g_i(x) \leq 0, \ \forall \ i \} \text{ and } Z = K \cap Z^n.$$
For convex g_i presented by a first order oracle, let

\[K = \{ x \mid g_i(x) \leq 0, \forall i \} \quad \text{and} \quad Z = K \cap \mathbb{Z}^n. \]

Cutting plane method, outer-approximation for $\min \{ c^T x \mid \text{s.t. } x \in Z \}$

Generate sequences of points x_1, \ldots, x_l from linear integer relaxations:

\[
x_j = \arg \min c^T x \quad \text{s.t. } x \in \mathbb{Z}^n,
\]

\[
\nabla g_i(x_k)^T (x - x_k) \leq 0, \quad k < j
\]

References: Kelly '60, Westerlund, Pettersson, Duran, Viswanathan, Grossmann, Fletcher, Leyffer, Bonami et al.
For convex g_i presented by a first order oracle, let

$$K = \{ x \mid g_i(x) \leq 0, \ \forall \ i \}.$$

Theorem [Lenstra ’83] [Grötschel, Lovász, Schrijver ’88]

For any fixed $n \geq 1$, there exists an oracle-polynomial algorithm that decides whether $K \cap \mathbb{Z}^n = \emptyset$.

The engine:

- **Ellipsoid method:**
 - Grötschel, Lovász, Schrijver 86
 - Yudin, Nemirovskii 76
 - Khachiyan 96

- **Shortest lattice vector problem:**
 - Khinchin’s flatness theorem. [Kannan 83]

- **Closest lattice vector problem:**
 - Babai, Kannan 83

Nice surveys: [Eisenbrand ’08, Hildebrand and Köppe ’12]
The continuous case without constraints

Theorem.
Let f be convex and continuously differentiable on its domain.
Let $x^* \in \text{dom } f$. Then, x^* attains the value
$$\min\{f(x) \mid x \in \text{dom } f\}$$
if and only if
$$\nabla f(x^*) = 0.$$
The continuous case without constraints

Theorem. Let f be convex and continuously differentiable on its domain. Let $x^* \in \text{dom } f$. Then, x^* attains the value

$$\min\{f(x) | x \in \text{dom } f\}$$

if and only if

$$\nabla f(x^*) = 0.$$

The unconstrained mixed integer case: [Baes, Oertel, W.]

Theorem. Let $f : \mathbb{R}^{n+d} \rightarrow \mathbb{R}$ be a continuous convex function. Then, $x^* \in \mathbb{Z}^n \times \mathbb{R}^d$ attains the value

$$\min\{f(x) | x \in \text{dom } f, x \in \mathbb{Z}^n \times \mathbb{R}^d\}$$

if and only if there exist $k \leq 2^n$ points $x_1 = x^*, x_2, \ldots, x_k \in \mathbb{Z}^n \times \mathbb{R}^d$ and vectors $h_i \in \partial f(x_i)$ such that the following conditions hold:

(a) $f(x_1) \leq \ldots \leq f(x_k)$,

(b) $\{x | h_i^T(x - x_i) < 0 \ \forall i\} \cap (\mathbb{Z}^n \times \mathbb{R}^d) = \emptyset$,

(c) $h_i \in \mathbb{R}^n \times \{0\}^d$ for $i = 1, \ldots, k$.
Proof. (assume $\text{dom } (f) = \mathbb{R}^{n+d}$ and f is differentiable.

First direction

Given x^* and $x_1 = x^*, x_2, \ldots, x_k \in \mathbb{Z}^n \times \mathbb{R}^d$ such that

(a) $f(x_1) \leq \ldots \leq f(x_k)$,
(b) $\{x \mid \nabla f(x_i)^T (x - x_i) < 0 \ \forall i\} \cap (\mathbb{Z}^n \times \mathbb{R}^d) = \emptyset$,
(c) $\nabla f(x_i) \in \mathbb{R}^n \times \{0\}^d$ for $i = 1, \ldots, k$.

Robert Weismantel
April 2015
Proof. (assume dom (f) = \(\mathbb{R}^{n+d} \) and f is differentiable.

First direction

Given \(x^* \) and \(x_1 = x^*, x_2, \ldots, x_k \in \mathbb{Z}^n \times \mathbb{R}^d \) such that

(a) \(f(x_1) \leq \ldots \leq f(x_k) \),
(b) \(\{ x \mid \nabla f(x_i)^T (x - x_i) < 0 \ \forall \ i \} \cap (\mathbb{Z}^n \times \mathbb{R}^d) = \emptyset \),
(c) \(\nabla f(x_i) \in \mathbb{R}^n \times \{ 0 \}^d \) for \(i = 1, \ldots, k \).

Then

\(\{ x \mid \nabla f(x_i)^T (x - x_i) < 0 \ \forall \ i \} \cap (\mathbb{Z}^n \times \mathbb{R}^d) = \emptyset \).

Hence, for every \(\bar{x} \in \mathbb{Z}^n \times \mathbb{R}^d \) there exists \(x_i \) such that

\[f(\bar{x}) - f(x_i) \geq \nabla f(x_i)^T (\bar{x} - x_i) \geq 0. \]

Then from (a), \(f(\bar{x}) \geq f(x_i) \geq f(x^*) \).
Proof continued.

Converse direction

Given x^* optimal. Let X^* be the set of all mixed integer optimal solutions. If there exists $\bar{x} \in X^*$ such that $0 \in \partial f(\bar{x})$, then the result follows.
Converse direction

Given x^* optimal. Let X^* be the set of all mixed integer optimal solutions. If there exists $\bar{x} \in X^*$ such that $0 \in \partial f(\bar{x})$, then the result follows.

Otherwise, we define $F : \mathbb{R}^n \mapsto \mathbb{R}$, $F(z) = \min \{ f(z, y) \mid y \in \mathbb{R}^d \}$. F is convex. Let y_z attain value $F(z)$. Then, $\nabla f(z, y_z) = (\nabla F(z), 0)$. Let

$$L = \{ x \in \mathbb{R}^n \mid \nabla F(z)^T (x - z) < 0 \ \forall z \in \mathbb{Z}^n \}.$$
Proof continued.

Converse direction

Given x^* optimal. Let X^* be the set of all mixed integer optimal solutions. If there exists $\bar{x} \in X^*$ such that $0 \in \partial f(\bar{x})$, then the result follows.

Otherwise, we define $F : \mathbb{R}^n \mapsto \mathbb{R}$, $F(z) = \min\{f(z, y) \mid y \in \mathbb{R}^d\}$. F is convex. Let y_z attain value $F(z)$. Then, $\nabla f(z, y_z) = (\nabla F(z), 0)$. Let

$$L = \{x \in \mathbb{R}^n \mid \nabla F(z)^T(x - z) < 0 \ \forall z \in \mathbb{Z}^n\}.$$

Note that $L \cap \mathbb{Z}^n = \emptyset$!

From [Doignon 73] there are $k \leq 2^n$ points $z_1, \ldots, z_k \in \mathbb{Z}^n$ such that

$$\bar{L} := \{x \in \mathbb{R}^n \mid \nabla F(z_i)^T(x - z_i) < 0 \ \forall i = 1, \ldots, k\}$$

satisfies $\bar{L} \cap \mathbb{Z}^n = \emptyset$. Wlog, $(z_1, y_1) = x^*$ and then together with (z_1, y_{z_i}) conditions (a) - (c) are satisfied.
Consider $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined as $f(x) := \|Ax - c\|_2^2$ with

$$A := \begin{pmatrix} 2 & -2 \\ 1 & 1 \end{pmatrix} \text{ and } c := \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

The continuous minimum of f is attained at $(1/2, 1/2)^T$. Let

$$x_1 = (0, 0), \ x_2 = (0, 1), \ x_3 = (1, 0), \ x_4 = (1, 1).$$

$L = \{x \mid \nabla f(x_i)^T (x - x_i) \leq 0, \ \forall i\}.$
Example

Consider $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined as $f(x) := \|Ax - c\|^2_2$ with

$$A := \begin{pmatrix} 2 & -2 \\ 1 & 1 \end{pmatrix} \quad \text{and} \quad c := \begin{pmatrix} 0 \\ 1. \end{pmatrix}$$

The continuous minimum of f is attained at $(1/2, 1/2)^T$. Let

$$x_1 = (0, 0), \ x_2 = (0, 1)\quad x_3 = (1, 0), \ x_4 = (1, 1).$$

$L = \{x \mid \nabla f(x_i)^T(x - x_i) \leq 0, \ \forall i\}$. We obtain

$$f(x_1) \leq f(x_i) \text{ for } i = 2, 3, 4, \\ \text{int}(L) \cap \mathbb{Z}^2 = \emptyset. \ \text{Therefore,} \ x_1 = \arg\min_{z \in \mathbb{Z}^2} f(z).$
KKT theorem under standard assumptions
Feasible x^\star is optimal $\iff \exists h_f \in \partial f(x^\star), h_{g_i} \in \partial g_i(x^\star), \lambda_i \geq 0 \ \forall \ i, \ h_f + \sum_{i=1}^{m} \lambda_i h_{g_i} = 0 \ \text{and} \ \lambda_i g_i(x^\star) = 0 \ \forall i.$
A mixed integer KKT theorem [Baes, Oertel, W. 2014]

KKT theorem under standard assumptions

Feasible x^\star is optimal $\iff \exists \; h_f \in \partial f(x^\star), \; h_{g_i} \in \partial g_i(x^\star), \; \lambda_i \geq 0 \; \forall \; i,$

$$h_f + \sum_{i=1}^{m} \lambda_i h_{g_i} = 0$$ and $\lambda_i g_i(x^\star) = 0 \; \forall \; i.$

For the mixed integer version and feasible $x^\star \in \mathbb{Z}^n \times \mathbb{R}^d$:

optimality $\iff \exists \; k \leq 2^n$ points $x_1 = x^\star, x_2, \ldots, x_k \in \mathbb{Z}^n \times \mathbb{R}^d$ and k vectors $u_1, \ldots, u_k \in \mathbb{R}^{m+1}_+$ with $h_{i,m+1} \in \partial f(x_i)$, and $h_{i,j} \in \partial g_j(x_i) \; \forall j$ and

(a) If $g(x_i) \leq 0$ then $f(x_i) \geq f(x_1), \; u_{i,m+1} > 0$ and $u_{i,j} g_j(x_i) = 0 \; \forall j,$

(b) If $g(x_i) \nleq 0$ then $u_{i,m+1} = 0$ and $u_{i,k}(g_k(x_i) - g_l(x_i)) \geq 0 \; \forall k, l,$
A mixed integer KKT theorem [Baes, Oertel, W. 2014]

KKT theorem under standard assumptions

Feasible x^* is optimal $\iff \exists h_f \in \partial f(x^*), h_{g_i} \in \partial g_i(x^*), \lambda_i \geq 0 \ \forall \ i,$

$$h_f + \sum_{i=1}^m \lambda_i h_{g_i} = 0 \text{ and } \lambda_i g_i(x^*) = 0 \ \forall \ i.$$

For the mixed integer version and feasible $x^* \in \mathbb{Z}^n \times \mathbb{R}^d$:

Optimality $\iff \exists k \leq 2^n$ points $x_1 = x^*, x_2, \ldots, x_k \in \mathbb{Z}^n \times \mathbb{R}^d$ and k vectors $u_1, \ldots, u_k \in \mathbb{R}^{m+1}_+$ with $h_{i,m+1} \in \partial f(x_i)$, and $h_{i,j} \in \partial g_j(x_i)$ $\forall j$ and

(a) If $g(x_i) \leq 0$ then $f(x_i) \geq f(x_1)$, $u_{i,m+1} > 0$ and $u_{i,j} g_j(x_i) = 0 \ \forall j$,

(b) If $g(x_i) \nleq 0$ then $u_{i,m+1} = 0$ and $u_{i,k}(g_k(x_i) - g_l(x_i)) \geq 0 \ \forall k, l$,

(c) $\{x \mid \sum_{j=1}^{m+1} u_{i,j} h_{i,j}^T (x - x_i) < 0 \text{ for all } i\} \cap (\mathbb{Z}^n \times \mathbb{R}^d) = \emptyset$,

(d) $\sum_{j=1}^{m+1} u_{i,j} h_{i,j} \in \mathbb{R}^n \times \{0\}^d$ for $i = 1, \ldots, k$.
A property of the certificate: integer projection property

The Euclidean Projection problem

Given $y \in \mathbb{R}^n$. Find

$$y^* = \text{argmin} \{ \|x - y\|_2 \mid g(x) \leq 0, x \in \mathbb{R}^n \}.$$

y^* is uniquely determined and satisfies

for all feasible x, \quad \|x - y\|_2 \geq \|x - y^*\|_2.$
A property of the certificate: integer projection property

The Euclidean Projection problem

Given \(y \in \mathbb{R}^n \). Find

\[
y^* = \arg\min \{ \|x - y\|_2 \mid g(x) \leq 0, x \in \mathbb{R}^n \}.
\]

\(y^* \) is uniquely determined and satisfies

for all feasible \(x \),

\[
\|x - y\|_2 \geq \|x - y^*\|_2.
\]

The mixed integer version

For \(y \in \mathbb{R}^{n+d} \), the certificate \(x_1, \ldots, x_k \) for

\[
\min\{\|x - y\|_2 \mid g(x) \leq 0, x \in \mathbb{Z}^n \times \mathbb{R}^d \}
\]

satisfies the projection property:

for mixed-integer feasible \(x \) \(\exists \ 1 \leq i \leq k \) for which

\[
\|x - y\|_2 \geq \|x - x_i\|_2.
\]
From KKT to duality

Assumptions

Let $f : \mathbb{R}^{n+d} \rightarrow \mathbb{R}$ and $g : \mathbb{R}^{n+d} \rightarrow \mathbb{R}^m$ be differentiable, convex functions, $\emptyset \neq \{ x \in \mathbb{R}^{n+d} | g(x) \leq 0 \} \subset \text{dom } f$ is compact. Let g fulfill the (mixed-integer) Slater condition.

Continuous Lagrangian duality

$$f^* = \min_{x \in \mathbb{R}^n} \{ f(x) | g(x) \leq 0 \} = \max_{\alpha, u \in \mathbb{R}^m_+} \{ \alpha | \alpha \leq f(x) + u^T g(x) \forall x \in \mathbb{R}^n \}.$$
From KKT to duality

Assumptions
Let \(f : \mathbb{R}^{n+d} \to \mathbb{R} \) and \(g : \mathbb{R}^{n+d} \to \mathbb{R}^m \) be differentiable, convex functions, \(\emptyset \neq \{ x \in \mathbb{R}^{n+d} | g(x) \leq 0 \} \subset \text{dom } f \) is compact. Let \(g \) fulfill the (mixed-integer) Slater condition.

Continuous Lagrangian duality
\[
f^* = \min_{x \in \mathbb{R}^n} \{ f(x) | g(x) \leq 0 \} = \max_{\alpha, u \in \mathbb{R}^m_+} \{ \alpha | \alpha \leq f(x) + u^T g(x) \forall x \in \mathbb{R}^n \}.
\]

Mixed integer duality [Baes, Oertel, W. 2014]
\[
\begin{align*}
\min_{x \in \mathbb{Z}^n \times \mathbb{R}^d} & \{ f(x) | g(x) \leq 0 \} \\
= \max_{\alpha \in \mathbb{R}^2, U \in \mathbb{R}^{2^n \times m}} & \{ \alpha | \exists \pi : \mathbb{Z}^n \times \mathbb{R}^d \to \{1, \ldots, 2^n\} \text{ s.t.} \\
& \forall x \in \mathbb{Z}^n \times \mathbb{R}^d \alpha \leq f(x) + U_{\pi(x)} g(x) \text{ or } 1 \leq U_{\pi(x)} g(x) \}.
\end{align*}
\]
Any lattice free polyhedron provides us with a dual bound.

Consider f convex.

Let y^* be the continuous optimum. Let L be any lattice free polyhedron such that

$$y^* \in \text{int} \ (L).$$

Then the integer optimum x satisfies

$$f(x) \geq \min \{ f(z) \mid z \in \delta(L) \}.$$
Any lattice free polyhedron provides us with a dual bound.

Consider f convex.
Let y^* be the continuous optimum.
Let L be any lattice free polyhedron such that

$$y^* \in \text{int} (L).$$

Then the integer optimum x satisfies

$$f(x) \geq \min \{ f(z) \mid z \in \delta(L) \}.$$
Any lattice free polyhedron provides us with a dual bound.

Consider f convex.
Let y^* be the continuous optimum.
Let L be any lattice free polyhedron such that $y^* \in \text{int}(L)$.
Then the integer optimum x satisfies

$$f(x) \geq \min\{f(z) \mid z \in \delta(L)\}.$$
How to shrink a polytope so that it becomes lattice free?

Shrinking of a polytope

- For a polytope P, the centroid
 \[c_P = \frac{\int_P x \, dx}{\text{vol}(G)}. \]
- $P_\lambda := \lambda(P - c_P) + c_P$.
- It seems difficult to determine a description of P_λ from P without knowing c_P.
How to shrink a polytope so that it becomes lattice free?

Shrinking of a polytope

- For a polytope P, the centroid $c_P = \frac{\int_P x \, dx}{\text{vol}(G)}$.
- $P_\lambda := \lambda(P - c_P) + c_P$.
- It seems difficult to determine a description of P_λ from P without knowing c_P.

Task: Minimize λ such that $P_\lambda \cap \mathbb{Z}^n \neq \emptyset$

leads to a mixed integer linear program in dimension $n + 1$:

$$t^* = \max t$$

$$a_i^T x + \omega(P, a_i)t \leq b_i \quad \forall i$$

$$x \in \mathbb{Z}^n, \quad t \geq 0.$$

(x^*, t) feasible implies $x^* \in P_{1-t}$ and $x^* \in \{x \mid x + t(P - P) \subseteq P\}$.

Robert Weismantel

April 2015
An algorithm

The setting

- Let K be a convex set presented by a first order oracle.
The setting

- Let K be a convex set presented by a first order oracle.
- Choose a constant $0 < \lambda < 1$.
An algorithm

The setting

- Let K be a convex set presented by a first order oracle.
- Choose a constant $0 < \lambda < 1$.

The steps for testing $K \cap \mathbb{Z}^n = \emptyset$:

- **Step 1**: Let $P = \{x \mid Ax \leq b\}$ be a polytope containing K.

\[P \cap \mathbb{Z}^n \neq \emptyset \]

\[P \cap \mathbb{Z}^n = \emptyset \]

If $P \lambda \cap \mathbb{Z}^n = \emptyset$, generate subproblems.

If $x^* \notin K$, separate x^*. This can be accomplished by adding $\nabla g_j(x^*)^T(x - x^*) < 0$.
An algorithm

The setting

- Let K be a convex set presented by a first order oracle.
- Choose a constant $0 < \lambda < 1$.

The steps for testing $K \cap \mathbb{Z}^n = \emptyset$:

- **Step 1**: Let $P = \{x \mid Ax \leq b\}$ be a polytope containing K.
- **Step 2**: If $P_\lambda \cap \mathbb{Z}^n = \emptyset$, generate subproblems.
An algorithm

The setting

- Let K be a convex set presented by a first order oracle.
- Choose a constant $0 < \lambda < 1$.

The steps for testing $K \cap \mathbb{Z}^n = \emptyset$:

- **Step 1**: Let $P = \{x \mid Ax \leq b\}$ be a polytope containing K.
- **Step 2**: If $P_\lambda \cap \mathbb{Z}^n = \emptyset$, generate subproblems.
- **Step 3**: Let $x^* \in P_\lambda \cap \mathbb{Z}^n$.
 - If $x^* \notin K$, separate x^*. This can be accomplished by adding
 \[\nabla g_j(x^*)^T (x - x^*) < 0. \]
How to reconstruct a dual certificate from this algorithm?

The engine:

Let G be a compact convex set, let H be a halfspace and let $0 < \lambda < 1$. If $G_\lambda \cap H \neq \emptyset$,

\[
\frac{\text{vol} (G \cap H)}{\text{vol} (G)} \geq (1 - \lambda)^n \left(\frac{n}{n + 1} \right)^n.
\]

This is an extension of a theorem of Grünbaum 1960 ($\lambda = 0$).
How to reconstruct a dual certificate from this algorithm?

The engine:
Let G be a compact convex set, let H be a halfspace and let $0 < \lambda < 1$. If $G \cap H \neq \emptyset$,

$$\frac{\text{vol} (G \cap H)}{\text{vol} (G)} \geq (1 - \lambda)^n \left(\frac{n}{n+1} \right)^n.$$

This is an extension of a theorem of Grünbaum 1960 ($\lambda = 0$).

Full dimensionality is lost

Iterations k until $\text{vol}(P) \leq \frac{1}{n!}$:

$$k \leq \frac{n \left[\log(2B) + \log(n) \right]}{(1 - \lambda)^n \left(\frac{n}{n+1} \right)^n}.$$
How to reconstruct a dual certificate from this algorithm?

The engine:

Let G be a compact convex set, let H be a halfspace and let $0 < \lambda < 1$. If $G_{\lambda} \cap H \neq \emptyset$,

$$\frac{\text{vol} (G \cap H)}{\text{vol} (G)} \geq (1 - \lambda)^n \left(\frac{n}{n + 1}\right)^n.$$

This is an extension of a theorem of Grünbaum 1960 ($\lambda = 0$).

Next step:

Apply the algorithm recursively to all lower dimensional problems.

Full dimensionality is lost

Iterations k until $\text{vol}(P) \leq \frac{1}{n!}$:

$$k \leq \frac{n \left[\log(2B) + \log(n) \right]}{(1 - \lambda)^n \left(\frac{n}{n + 1}\right)^n}.$$
How to reconstruct a dual certificate from this algorithm?

The engine:
Let G be a compact convex set, let H be a halfspace and let $0 < \lambda < 1$. If $G_\lambda \cap H \neq \emptyset$,

$$\frac{\text{vol}(G \cap H)}{\text{vol}(G)} \geq (1 - \lambda)^n \left(\frac{n}{n + 1}\right)^n.$$

This is an extension of a theorem of Grünbaum 1960 ($\lambda = 0$).

Next step:
Apply the algorithm recursively to all lower dimensional problems.

The certificate
Let x^1, \ldots, x^k be all points with separating hyperplanes $c_i^T x \leq \gamma_i$ generated in the course of the algorithm.

$$L = \{x \in \mathbb{R}^n \mid c_i^T x < \gamma_i\}$$

is a lattice free polyhedron.

Full dimensionality is lost
Iterations k until $\text{vol}(P) \leq \frac{1}{n!}$:

$$k \leq \frac{n \left[\log(2B) + \log(n)\right]}{(1 - \lambda)^n \left(\frac{n}{n+1}\right)^n}.$$