Holonomy and singular foliations

Marco Zambon (Univ. Autónoma Madrid-ICMAT)

joint work with
Iakovos Androulidakis (University of Athens)

Congreso de Jóvenes Investigadores de la RSME 2013
We study geometric properties of singular foliations:

A) Is there any sense in which the holonomy groupoid of a singular foliation is smooth?
B) What is the notion of holonomy for a singular foliation?
C) When is a singular foliation isomorphic to its linearization?
For a regular foliation given by an involutive distribution $F \subset TM$, it is well known that:

B) Given a path $\gamma : [0, 1] \rightarrow M$ lying in a leaf, its holonomy is the germ of a diffeomorphism $S_{\gamma(0)} \rightarrow S_{\gamma(1)}$ between slices transverse to F. It is obtained “following nearby paths in leaves of F”. ●

A) The holonomy groupoid is

$$H = \{\text{paths in leaves of } F\}/(\text{holonomy of paths}).$$

It is a Lie groupoid, integrating the Lie algebroid F.

C) Non-invariant Reeb stability theorem:
Suppose L is an embedded leaf and H^x_L is finite ($H^x_L = \{\text{holonomy of loops based at } x \in L\}$).
Then, nearby L, the foliation F is isomorphic to its linearization.
Singular foliations

Let M be a manifold. A singular foliation \mathcal{F} is a submodule of the $C^\infty(M)$-module $\mathcal{X}_c(M)$ (the compactly supported vector fields) such that:

- \mathcal{F} is locally finitely generated,
- $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$.

(M, \mathcal{F}) is partitioned into leaves (of varying dimension).

Examples

1) On $M = \mathbb{R}$ take \mathcal{F} to be generated by $x \partial_x$ or by $x^2 \partial_x$. Both foliations have the same partition into leaves: $\mathbb{R}_-, \{0\}, \mathbb{R}_+$.

2) On $M = \mathbb{R}^2$ take $\mathcal{F} = \langle \partial_x, y \partial_y \rangle$.

3) If G is a Lie group acting on M, take

$$\mathcal{F} = \langle v_M : v \in \mathfrak{g} \rangle.$$

(Here v_M denotes the infinitesimal generator of the action associated to $v \in \mathfrak{g}$.)

The leaves of \mathcal{F} are the orbits of the action.
A) The holonomy groupoid and smoothness

Let $X_1, \ldots, X_n \in \mathcal{F}$ be local generators of \mathcal{F}. A path holonomy bi-submersion is (U, s, t) where

$$U \subset M \times \mathbb{R}^n \xrightarrow{s} M \xrightarrow{t} M$$

and the (source and target) maps are

$$s(y, \xi) = y$$
$$t(y, \xi) = \exp_y(\sum_{i=1}^n \xi_i X_i), \text{ the time}-1 \text{ flow of } \sum_{i=1}^n \xi_i X_i \text{ starting at } y.$$

There is a notion of composition and inversion of path holonomy bi-submersions, as well as a notion of morphism.
Take a family of path holonomy bi-submersions \(\{U_i\}_{i \in I} \) covering \(M \). Let \(\mathcal{U} \) be the family of all finite products of elements of \(\{U_i\}_{i \in I} \) and of their inverses.

The **holonomy groupoid of the foliation** \(\mathcal{F} \) [Androulidakis-Skandalis] is

\[
H := \coprod_{U \in \mathcal{U}} U / \sim
\]

where \(u \in U \sim u' \in U' \) if there is a morphism of bi-submersions \(f : U \to U' \) (defined near \(u \)) such that \(f(u) = u' \).

\(H \) is a topological groupoid over \(M \), usually not smooth.

Examples

1) Consider the action of \(S^1 \) on \(M = \mathbb{R}^2 \) by rotations. Then

\[
H = S^1 \times \mathbb{R}^2 \rightrightarrows \mathbb{R}^2
\]

(the transformation groupoid).

2) Consider the action of \(GL(2, \mathbb{R}) \) on \(M = \mathbb{R}^2 \) and the induced foliation. Then

\[
H = (\mathbb{R}^2 - \{0\}) \times (\mathbb{R}^2 - \{0\}) \coprod GL(2, \mathbb{R}).
\]
Smoothness of H_L

Let L be a leaf and $x \in L$. There is a short exact sequence of vector spaces

$$0 \rightarrow \mathfrak{g}_x \rightarrow (\mathcal{F}/I_x\mathcal{F}) \xrightarrow{ev_x} T_xL \rightarrow 0$$

where ev_x is evaluation at x.

$$A_L := \bigcup_{x \in L}(\mathcal{F}/I_x\mathcal{F})$$

is a transitive Lie algebroid over L, with $\Gamma_c(A_L) \cong \mathcal{F}/I_L\mathcal{F}$.

Question: When does A_L integrate to H_L (the restriction of the holonomy groupoid to L)?

Theorem (Debord)

Let (M, \mathcal{F}) be a foliation and L a leaf. The transitive groupoid H_L is smooth and integrates the Lie algebroid A_L.

B) Holonomy

For a regular foliation F and a path γ in a leaf, the holonomy of γ is defined “following nearby paths in the leaves of F”.

For singular foliations this fails (think of $M = \mathbb{R}^2$, $F = \langle x\partial_y - y\partial_x \rangle$, and γ the constant path at the origin).

Question: How to extend the notion of holonomy to singular foliations?

Let $x, y \in (M, F)$ be points in the same leaf L, and fix transversals S_x and S_y.

Theorem

There is a well defined map

$$
\Phi^y_x : H^y_x \to \frac{\text{GermAut}_F(S_x, S_y)}{\exp(I_x F_{S_x})}, \quad h \mapsto \langle \tau \rangle.
$$

Here τ is defined as follows, given $h \in H^y_x$:

- take any bi-submersion (U, t, s) and $u \in U$ satisfying $[u] = h$,
- take any section $\bar{b} : S_x \to U$ through u of s such that $(t \circ \bar{b})(S_x) \subset S_y$,

and define $\tau := t \circ \bar{b} : S_x \to S_y$. ✗
Example:
Let $M = \mathbb{R}$ and $\mathcal{F} = \langle x \partial_x \rangle$. We have $H = \mathbb{R} \times M \rightrightarrows M$.
So $H_0^0 \cong \mathbb{R}$, and a transversal S_0 at 0 is a neighborhood of 0 in M. We have:

$$\Phi_0^0(\lambda) = [y \mapsto e^{\lambda}y] \in \frac{\text{GermAut}_\mathcal{F}(S_0, S_0)}{\exp(I_0 x \partial_x)}.$$

We obtain a groupoid morphism

$$\Phi: H \to \bigcup_{x,y} \frac{\text{GermAut}_\mathcal{F}(S_x, S_y)}{\exp(I_x \mathcal{F})_{S_x}}.$$

Remark: Φ is injective.

Remark: If \mathcal{F} is a regular foliation, then $\exp(I_x \mathcal{F}_{S_x}) = \{\text{Id}_{S_x}\}$, hence the map Φ recovers the usual notion of holonomy for regular foliations.

The above remarks are two justifications for calling H holonomy groupoid.
Linear holonomy

Let L be a leaf. From the holonomy map Φ we obtain:

1) by taking the derivative of τ:

\[\Psi_L : H_L \to Iso(NL, NL), \]

a Lie groupoid representation of H_L on NL.

2) by differentiating Ψ_L:

\[\nabla^L, \perp : A_L \to Der(NL), \]

the Lie algebroid representation of A_L on NL induced by the Lie bracket.

(Notice that $\Gamma(A_L) = \mathcal{F}/I_L\mathcal{F}$ and $\Gamma(NL) = \mathcal{X}(M)/(\mathcal{F} + I_L\mathcal{X}(M))$.)

Here $\Gamma(Der(NL)) = \{\text{first order differential operators on } NL\}$.

C) Linearization

Vector field Y on M tangent to $L \leftrightarrow$
vector field Y_{lin} on NL, defined as follows:

Y_{lin} acts on the fiberwise constant functions as $Y|_L$

Y_{lin} acts on $C^\infty_{lin}(NL) \cong I_L/I_L^2$ as $Y_{lin}[f] := [Y(f)]$.

The linearization of \mathcal{F} at L is the foliation \mathcal{F}_{lin} on NL generated by
$\{Y_{lin} : Y \in \mathcal{F}\}$.

Lemma

Let L be an embedded leaf.
Then the linearized foliation \mathcal{F}_{lin} is the foliation induced by the Lie groupoid
action Ψ_L of H_L on NL.
We say \mathcal{F} is linearizable at L if there is a diffeomorphism mapping \mathcal{F} to \mathcal{F}_{lin}.

Remark: When $\mathcal{F} = \langle X \rangle$ with X vanishing at $L = \{x\}$, linearizability of \mathcal{F} means: there is a diffeomorphism taking X to a fX_{lin} for a non-vanishing function f. It is a weaker condition than the linearizability of the vector field X!

Question: When is a singular foliation isomorphic to its linearization?
We don’t know, but:

Proposition

Let L be an embedded leaf. Assume that H^x_x is compact for $x \in L$. The following are equivalent:

1) \mathcal{F} is linearizable about L

2) there exists a tubular neighborhood U of L and a (Hausdorff) Lie groupoid $G \rightrightarrows U$, proper at x, inducing the foliation $\mathcal{F}|_U$.

In that case:
- G can be chosen to be the transformation groupoid of the action Ψ_L of H_L on NL,
- $(U, \mathcal{F}|_U)$ admits the structure of a singular Riemannian foliation.
I. Androulidakis and G. Skandalis:
The holonomy groupoid of a singular foliation.

I. Androulidakis and M. Zambon:
Smoothness of holonomy covers for singular foliations and essential isotropy.

I. Androulidakis and M. Zambon:
Holonomy transformations for singular foliations.
arXiv:1205.6008

C. Debord:
Longitudinal smoothness of the holonomy groupoid.
Comptes Rendus(2013)
Thank you!