Characterization of variational equations on natural bundles

J. Navarro

Department of Mathematics
University of Extremadura, Spain

(joint work with J. B. Sancho)

Seville 2013
1. Variational equations
2. Takens’ problem
3. Takens’ problem in the bundle of metrics
Consider functions:

\[
Space \equiv \left[\text{Smooth sections of a bundle } F \longrightarrow X \right] \longrightarrow \mathbb{R}
\]

of the following kind:

\[
s \mapsto \int_X \mathcal{L} \left(x_j, s_i, \frac{\partial s_i}{\partial x_j}, \ldots, \frac{\partial^k s_i}{\partial x^j} \ldots \right) \, dx^1 \wedge \ldots \wedge dx^n
\]

Critical points? \Rightarrow \text{Euler-Lagrange equations on } s
Consider functions:

\[\text{Space} \equiv \left[\text{Smooth sections of a bundle } F \longrightarrow X \right] \longrightarrow \mathbb{R} \]

of the following kind:

\[
\mathbf{s} \longmapsto \int_X \mathcal{L} \left(x_j, s_i, \frac{\partial s_i}{\partial x_j}, \ldots, \frac{\partial^k s_i}{\partial x^J} \ldots \right) \, dx^1 \wedge \ldots \wedge dx^n
\]

Critical points? \Rightarrow Euler-Lagrange equations on \(\mathbf{s} \)
Consider functions:

\[\text{Space} \equiv \left[\text{Smooth sections of a bundle } F \to X \right] \to \mathbb{R} \]

of the following kind:

\[
s \mapsto \int_X \mathcal{L} \left(x_j, s_i, \frac{\partial s_i}{\partial x_j}, \ldots, \frac{\partial^k s_i}{\partial x^j}, \ldots \right) d x^1 \wedge \ldots \wedge d x^n
\]

Critical points? \Rightarrow Euler-Lagrange equations on \(s \)
Variational principles and Euler-Lagrange equations

Consider functions:

\[\text{Space} \equiv \left[\text{Smooth sections of a bundle } F \to X \right] \to \mathbb{R} \]

of the following kind:

\[s \mapsto -\int_X L \left(x_j, s_i, \frac{\partial s_i}{\partial x_j}, \ldots, \frac{\partial^k s_i}{\partial x^J}, \ldots \right) \, dx^1 \wedge \ldots \wedge dx^n \]

Critical points? \Rightarrow \textbf{Euler-Lagrange equations on } s
Examples

\[\text{Space} \equiv \left[\text{Smooth functions on } X \right] \]

- Wave equation.
- Heat equation.

\[\text{Space} \equiv \left[\text{Smooth curves on } X \right] \]

- Equation of geodesics.
- Newton’s equations of motion.
Examples

\[Space \equiv \left[\text{Smooth functions on } X \right] \]

- Wave equation.
- Heat equation.

\[Space \equiv \left[\text{Smooth curves on } X \right] \]

- Equation of geodesics.
- Newton’s equations of motion.
Examples

$\text{Space} \equiv \begin{bmatrix} \text{Smooth functions} \\ \text{on } X \end{bmatrix}$

- Wave equation.
- Heat equation.

$\text{Space} \equiv \begin{bmatrix} \text{Smooth curves} \\ \text{on } X \end{bmatrix}$

- Equation of geodesics.
- Newton’s equations of motion.
Examples

\[\text{Space} \equiv \begin{bmatrix} \text{Smooth functions on } X \end{bmatrix} \]

- Wave equation.
- Heat equation.

\[\text{Space} \equiv \begin{bmatrix} \text{Smooth curves on } X \end{bmatrix} \]

- Equation of geodesics.
- Newton’s equations of motion.
\[\text{Space} \equiv \begin{bmatrix} \text{Lorentzian metrics on } X \end{bmatrix} \]

- Einstein field equations.
- Einstein-Maxwell equations.

\[\text{Space} \equiv \begin{bmatrix} \text{Principal connections of a principal bundle } P \to X \end{bmatrix} \]

...
Space \equiv \begin{bmatrix} \text{Lorentzian metrics on } X \end{bmatrix}

- Einstein field equations.
- Einstein-Maxwell equations.

Space \equiv \begin{bmatrix} \text{Principal connections of a principal bundle } P \to X \end{bmatrix}

...
$Space \equiv \begin{bmatrix} \text{Lorentzian metrics} \\ \text{on } X \end{bmatrix}$

- Einstein field equations.
- Einstein-Maxwell equations.

$Space \equiv \begin{bmatrix} \text{Principal connections of a} \\ \text{principal bundle } P \to X \end{bmatrix}$
Which equations are variational?

- Classical answer:

 \[\text{Equation} \rightsquigarrow \text{Cohomology class} \rightsquigarrow \text{Helmholtz conditions.} \]
Which equations are variational?

- Classical answer:

 \[\text{Equation} \leftrightarrow \text{Cohomology class} \leftrightarrow \text{Helmholtz conditions}. \]
Which equations are variational?

- Classical answer:

\[\text{Equation} \rightsquigarrow \text{Cohomology class} \rightsquigarrow \text{Helmholtz conditions.} \]
Which equations are variational?

- Classical answer:

\[\text{Equation} \leadsto \text{Cohomology class} \leadsto \text{Helmholtz conditions}. \]
Takens’ approach

\(T \) an equation. \(D \) a vector field (infinitesimal transformation)

\(D \) can generate a conservation law for \(T \).

\(D \) is a symmetry of \(T \) if

\[L_D T = 0. \]

Theorem (First Noether’s Theorem)

Let \(T \) be a variational equation.

\(D \) is a symmetry of \(T \) \(\iff \) \(D \) generates a conservation law for \(T \).
Takens’ approach

\(\mathbb{T} \) an equation. \(D \) a vector field (infinitesimal transformation)

\(D \) can generate a conservation law for \(\mathbb{T} \).

\(D \) is a symmetry of \(\mathbb{T} \) if

\[L_D \mathbb{T} = 0. \]

Theorem (First Noether’s Theorem)

Let \(\mathbb{T} \) be a variational equation.

\(D \) is a symmetry of \(\mathbb{T} \) \iff \(D \) generates a conservation law for \(\mathbb{T} \).
Takens’ approach

\(T \) an equation. \(D \) a vector field (infinitesimal transformation)

\(D \) can generate a conservation law for \(T \).

\(D \) is a \textbf{symmetry} of \(T \) if

\[L_D T = 0. \]

Theorem (First Noether’s Theorem)

Let \(T \) be a variational equation.

\(D \) is a symmetry of \(T \) \iff \(D \) generates a conservation law for \(T \).
Takens’ approach

T an equation. D a vector field (infinitesimal transformation)

D can generate a conservation law for T.

D is a symmetry of T if

$$L_D T = 0.$$

Theorem (First Noether’s Theorem)

Let T be a variational equation.

D is a symmetry of T \iff D generates a conservation law for T.

J. Navarro (Univ. Extremadura)
Variational equations on natural bundles
August 2013 7 / 12
Takens’ approach

\[T \] an equation. \(D \) a vector field (infinitesimal transformation)

\(D \) can generate a conservation law for \(T \).

\(D \) is a symmetry of \(T \) if

\[L_D T = 0. \]

Theorem (First Noether’s Theorem)

Let \(T \) be a variational equation.

\[D \text{ is a symmetry of } T \iff D \text{ generates a conservation law for } T. \]
Space $\equiv \left[\text{Smooth sections of a natural bundle } F \to X \right]$

Div generalized divergence operator.

T is natural if

$$L_D T = 0 \quad \forall \text{ vector field on } X$$

Theorem (Second Noether’s Theorem for natural bundles)

Let T be a variational equation.

T is natural \iff $\text{Div } T = 0$.
\[
Space \equiv \left[\text{Smooth sections of a natural bundle } F \rightarrow X \right]
\]

\[
\text{Div} \text{ generalized divergence operator.}
\]

\[T \text{ is natural if}
\]

\[L_D T = 0 \quad , \quad \forall D \text{ vector field on } X\]

Theorem (Second Noether’s Theorem for natural bundles)

Let T be a variational equation.

\[T \text{ is natural } \iff \text{Div } T = 0 .\]
$\textbf{Space} \equiv \begin{bmatrix} \text{Smooth sections of a} \\ \text{natural bundle } F \to X \end{bmatrix}$

Div generalized divergence operator.

\mathcal{T} is \textbf{natural} if

$$L_D \mathcal{T} = 0 \ , \ \forall \ D \text{ vector field on } X$$

Theorem (Second Noether’s Theorem for natural bundles)

Let \mathcal{T} be a variational equation.

$$\mathcal{T} \text{ is natural } \iff \text{Div } \mathcal{T} = 0 .$$
$Space \equiv \left[\text{Smooth sections of a natural bundle } F \to X \right]$

Div is a generalized divergence operator.

T is natural if

$L_D T = 0 \quad , \quad \forall \, D \text{ vector field on } X$

Theorem (Second Noether’s Theorem for natural bundles)

Let T be a variational equation.

T is natural \iff $\text{Div } T = 0$.
Space ≡ \[\text{Smooth sections of a natural bundle } F \to X \]

Div generalized divergence operator.

\(T \) is \textbf{natural} if

\[L_D T = 0 \quad , \quad \forall D \text{ vector field on } X \]

\textbf{Theorem (Second Noether’s Theorem for natural bundles)}

\(\text{Let } T \text{ be a variational equation.} \)

\[T \text{ is natural } \iff \text{Div } T = 0 \]
Takens’ observation

\[T \text{ a variational equation} \]

\[\Downarrow \]

\[D \text{ is a symmetry of } T \iff D \text{ generates a conservation law of } T \]

or

\[\text{Diff}(X) \text{ is a symmetry of } T \iff \text{the identity } \text{Div } T = 0 \text{ holds} \]

Does the reciprocal holds?
Takens’ observation

\[T \text{ a variational equation} \]

\[\Downarrow \]

\[D \text{ is a symmetry of } T \iff D \text{ generates a conservation law of } T \]

or

\[\text{Diff}(X) \text{ is a symmetry of } T \iff \text{the identity } \text{Div} T = 0 \text{ holds} \]

Does the reciprocal holds?
Takens’ statement in the bundle of metrics

\[T \text{ a 2-tensor } (\text{Ricci, Einstein,}...) \]

Div is the standard divergence operator \(\text{div} \).

Takens’ statement:

\[T \text{ es natural y } \text{div} \ T = 0 \quad \Rightarrow \quad T \text{ es variacional} \]
Takens’ statement in the bundle of metrics

\(\mathbb{T} \) a 2-tensor \((\text{Ricci, Einstein,}...)\)

\(\text{Div} \) is the standard divergence operator \(\text{div} \).

Takens’ statement:

\(\mathbb{T} \text{ es natural y } \text{div} \mathbb{T} = 0 \quad \Rightarrow \quad \mathbb{T} \text{ es variacional} \)
Takens’ statement in the bundle of metrics

\(T \) a 2-tensor \((Ricci, Einstein,...)\)

\(\text{Div} \) is the standard divergence operator \(\text{div} \).

Takens’ statement:

\[
T \text{ es natural y } \text{div} \ T = 0 \implies T \text{ es variacional}
\]
Takens’ statement in the bundle of metrics

\[T \text{ a 2-tensor (Ricci, Einstein,...)} \]

\(\text{Div} \) is the standard divergence operator \(\text{div} \).

\textbf{Takens’ statement:}

\[T \text{ es natural y } \text{div} \ T = 0 \Rightarrow T \text{ es variacionsal} \]
Takens’ statement:

\mathcal{T} es natural y $\text{div}\mathcal{T} = 0 \implies \mathcal{T}$ es variacional

Theorem (Takens ‘77)

If \mathcal{T} is of order 2, then Takens’ statement holds.

Theorem (Anderson-Pohjanpelto ‘12)

If \mathcal{T} is of order 3, then Takens’ statement holds.

Theorem (N. - Sancho)

If $\dim X = 2$ and \mathcal{T} is of order 4, then Takens’ statement holds.
Takens’ statement:

\[\mathbb{T} \text{ es natural y } \text{div}\mathbb{T} = 0 \overset{?}{\Rightarrow} \mathbb{T} \text{ es variacional} \]

Theorem (Takens ’77)

If \(\mathbb{T} \) is of order 2, then Takens’ statement holds.

Theorem (Anderson-Pohjanpelto ’12)

If \(\mathbb{T} \) is of order 3, then Takens’ statement holds.

Theorem (N. - Sancho)

If \(\text{dim } X = 2 \) and \(\mathbb{T} \) is of order 4, then Takens’ statement holds.
Takens’ statement:

\[\mathbb{T} \text{ es natural y } \operatorname{div}\mathbb{T} = 0 \quad \implies \quad \mathbb{T} \text{ es variacional} \]

Theorem (Takens ’77)

If \(\mathbb{T} \) *is of order 2, then Takens’ statement holds.*

Theorem (Anderson-Pohjanpelto ’12)

If \(\mathbb{T} \) *is of order 3, then Takens’ statement holds.*

Theorem (N. - Sancho)

If \(\dim X = 2 \) *and* \(\mathbb{T} \) *is of order 4, then Takens’ statement holds.*
Takens’ statement:

\[T \text{ es natural y } \text{div}\, T = 0 \implies T \text{ es variacional} \]

Theorem (Takens ’77)

If \(T \) *is of order 2, then Takens’ statement holds.*

Theorem (Anderson-Pohjanpelto ’12)

If \(T \) *is of order 3, then Takens’ statement holds.*

Theorem (N. - Sancho)

If \(\text{dim} \, X = 2 \) *and* \(T \) *is of order 4, then Takens’ statement holds.*
Characterization of variational equations on natural bundles

J. Navarro

Department of Mathematics
University of Extremadura, Spain

(joint work with J. B. Sancho)

Seville 2013