Hipersuperficies espaciales completas con curvatura media constante en un espacio de Robertson-Walker

Alma L. Albuher
(trabajo conjunto con F. E. C. Camargo y H. F. de Lima)

Universidad de Córdoba

2º Congreso de Jóvenes Investigadores de la RSME
Sevilla, 16 ~ 20 Septiembre 2013

Parcialmente financiado por MICINN/FEDER MTM2009-10418
y Fundación Séneca 04540/GERM/06
Calabi-Bernstein theorem (1970)

Non-parametric version

The only entire maximal graphs in \mathbb{L}^3 are the spacelike planes. Equivalently, the only entire solutions to the maximal surface equation

$$\text{Div} \left(\frac{Du}{\sqrt{1 - |Du|^2}} \right) = 0, \quad |Du|^2 < 1$$

in \mathbb{R}^2 are the affine functions.
Non-parametric version
The only entire maximal graphs in \mathbb{L}^3 are the spacelike planes. Equivalently, the only entire solutions to the maximal surface equation

$$\text{Div} \left(\frac{Du}{\sqrt{1 - |Du|^2}} \right) = 0, \quad |Du|^2 < 1$$

in \mathbb{R}^2 are the affine functions.

Parametric version
The only complete maximal surfaces in \mathbb{L}^3 are the spacelike planes.
Calabi-Bernstein theorem (1970)

Non-parametric version

The only entire maximal graphs in \mathbb{L}^3 are the spacelike planes. Equivalently, the only entire solutions to the maximal surface equation

$$\text{Div} \left(\frac{Du}{\sqrt{1 - |Du|^2}} \right) = 0, \quad |Du|^2 < 1$$

in \mathbb{R}^2 are the affine functions.

Parametric version

The only complete maximal surfaces in \mathbb{L}^3 are the spacelike planes.

- Cheng and Yau (1976) extended this theorem to general dimension.

Alma L. Albujer, F. E. C. Camargo y H. F. de Lima

Hipersuperficies espaciales CMC en un RW
Non-parametric version

The only entire maximal graphs in \mathbb{L}^3 are the spacelike planes. Equivalently, the only entire solutions to the maximal surface equation

$$\text{Div} \left(\frac{Du}{\sqrt{1 - |Du|^2}} \right) = 0, \quad |Du|^2 < 1$$

in \mathbb{R}^2 are the affine functions.

Parametric version

The only complete maximal surfaces in \mathbb{L}^3 are the spacelike planes.

- Cheng and Yau (1976) extended this theorem to general dimension.
<table>
<thead>
<tr>
<th>Aiyama (1992), Xin (1991)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let Σ^n be a complete spacelike hypersurface with constant mean curvature immersed into \mathbb{L}^{n+1}. Suppose that the hyperbolic image of Σ^n is contained in a geodesic ball of \mathbb{H}^n. Then Σ^n is a spacelike hyperplane.</td>
</tr>
</tbody>
</table>
Two generalizations of the Calabi-Bernstein theorem

Aiyama (1992), Xin (1991)

Let Σ^n be a complete spacelike hypersurface with constant mean curvature immersed into \mathbb{L}^{n+1}. Suppose that the hyperbolic image of Σ^n is contained in a geodesic ball of \mathbb{H}^n. Then Σ^n is a spacelike hyperplane.

\mathbb{H}^n is a spacelike hypersurface in \mathbb{L}^{n+1} with constant mean curvature which is not a spacelike hyperplane.
Aiyama (1992), Xin (1991)

Let Σ^n be a complete spacelike hypersurface with constant mean curvature immersed into \mathbb{L}^{n+1}. Suppose that the hyperbolic image of Σ^n is contained in a geodesic ball of \mathbb{H}^n. Then Σ^n is a spacelike hyperplane.

$\star \mathbb{H}^n$ is a spacelike hypersurface in \mathbb{L}^{n+1} with constant mean curvature which is not a spacelike hyperplane.

Albujer and Alías (2009)

Let M^2 be a (necessarily complete) Riemannian surface with non-negative Gaussian curvature, $K_M \geq 0$. Then, any complete maximal surface Σ^2 in $-\mathbb{R} \times M^2$ is totally geodesic. Moreover, if $K_M > 0$ at some point on M, then Σ is a slice $\{t_0\} \times M$, $\{t_0\} \in \mathbb{R}$.

\star This result is no longer true in $-\mathbb{R} \times \mathbb{H}^2$.

Alma L. Albujer, F. E. C. Camargo y H. F. de Lima

Hipersuperficies espaciales CMC en un RW
Two generalizations of the Calabi-Bernstein theorem

Aiyama (1992), Xin (1991)

Let Σ^n be a complete spacelike hypersurface with constant mean curvature immersed into \mathbb{L}^{n+1}. Suppose that the hyperbolic image of Σ^n is contained in a geodesic ball of \mathbb{H}^n. Then Σ^n is a spacelike hyperplane.

- \mathbb{H}^n is a spacelike hypersurface in \mathbb{L}^{n+1} with constant mean curvature which is not a spacelike hyperplane.

Albujer and Al´ıas (2009)

Let M^2 be a (necessarily complete) Riemannian surface with non-negative Gaussian curvature, $K_M \geq 0$. Then, any complete maximal surface Σ^2 in $-\mathbb{R} \times M^2$ is totally geodesic. Moreover, if $K_M > 0$ at some point on M, then Σ is a slice $\{t_0\} \times M$, $\{t_0\} \in \mathbb{R}$.

- This result is no longer true in $-\mathbb{R} \times \mathbb{H}^2$.
In this talk...

... we study constant mean curvature spacelike hypersurfaces in a Robertson-Walker spacetime under certain energy conditions.
In this talk...

... we study constant mean curvature spacelike hypersurfaces in a Robertson-Walker spacetime under certain energy conditions.

... Our main tool is the Omori-Yau maximum principle.
Let \(f : [a, b] \to \mathbb{R} \) be a continuous function. Then \(f \) attains its maximum at some point \(p_0 \in [a, b] \).
Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Then f attains its maximum at some point $p_0 \in [a, b]$.

If $p_0 \in (a, b)$ and f has continuous second derivative in a neighbourhood of p_0, then

$$f'(p_0) = 0 \quad \text{and} \quad f''(p_0) \leq 0.$$
The Omori-Yau maximum principle

- Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then f attains its maximum at some point $p_0 \in [a, b]$.

- If $p_0 \in (a, b)$ and f has continuous second derivative in a neighbourhood of p_0, then

 $$ f'(p_0) = 0 \quad \text{and} \quad f''(p_0) \leq 0. $$

- Consider now a compact Riemannian manifold M (without boundary) and consider any smooth function $f \in C^2(M)$. Then f attains its maximum at some point $p_0 \in M$ and

 $$ |\nabla f(p_0)| = 0 \quad \text{and} \quad \Delta f(p_0) \leq 0. $$
The Omori-Yau maximum principle

- Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Then f attains its maximum at some point $p_0 \in [a, b]$.

- If $p_0 \in (a, b)$ and f has continuous second derivative in a neighbourhood of p_0, then
 $$f'(p_0) = 0 \quad \text{and} \quad f''(p_0) \leq 0.$$

- Consider now a compact Riemannian manifold M (without boundary) and consider any smooth function $f \in C^2(M)$. Then f attains its maximum at some point $p_0 \in M$ and
 $$|\nabla f(p_0)| = 0 \quad \text{and} \quad \Delta f(p_0) \leq 0.$$

- When M is not compact, a given function $f \in C^2(M)$ with $\sup_M f < +\infty$ does not necessarily attains its supremum.
The Omori-Yau maximum principle

Let \(f : [a, b] \rightarrow \mathbb{R} \) be a continuous function. Then \(f \) attains its maximum at some point \(p_0 \in [a, b] \).

If \(p_0 \in (a, b) \) and \(f \) has continuous second derivative in a neighbourhood of \(p_0 \), then \(f'(p_0) = 0 \) and \(f''(p_0) \leq 0 \).

Consider now a compact Riemannian manifold \(M \) (without boundary) and consider any smooth function \(f \in C^2(M) \). Then \(f \) attains its maximum at some point \(p_0 \in M \) and \(|\nabla f(p_0)| = 0 \) and \(\Delta f(p_0) \leq 0 \).

When \(M \) is not compact, a given function \(f \in C^2(M) \) with \(\sup_M f < +\infty \) does not necessarily attains its supremum.

Omori-Yau maximum principle (Omori, 1967 and Yau, 1975)

Let \(M^n \) be an \(n \)-dimensional complete Riemannian manifold whose Ricci curvature is bounded from below and consider \(f : M^n \rightarrow \mathbb{R} \) a smooth function which is bounded from above on \(M^n \). Then there is a sequence of points \(\{p_k\}_{k \in \mathbb{N}} \subset M^n \) such that

\[
\lim_{k \to \infty} f(p_k) = \sup_M f \quad \text{and} \quad \lim_{k \to \infty} |\nabla f(p_k)| = 0 \quad \text{and} \quad \lim_{k \to \infty} \Delta f(p_k) \leq 0.
\]
Robertson-Walker spacetimes

Let \((M^n, \langle \cdot, \cdot \rangle_M)\) be a Riemannian manifold of constant sectional curvature \(\kappa\), \(I \subseteq \mathbb{R}\) a real interval and \(f > 0\) a positive smooth function on \(I\):
Let $(M^n, \langle , \rangle_M)$ be a Riemannian manifold of constant sectional curvature κ, $I \subseteq \mathbb{R}$ a real interval and $f > 0$ a positive smooth function on I:

- **A Robertson-Walker spacetime** is the product manifold $I \times M^n$ endowed with the Lorentzian metric

$$\langle , \rangle = -dt^2 + f^2 \langle , \rangle_M.$$

- We denote it by $-I \times_f M^n$.
Robertson-Walker spacetimes

Let \((M^n, \langle \cdot, \cdot \rangle_M)\) be a Riemannian manifold of constant sectional curvature \(\kappa\), \(I \subseteq \mathbb{R}\) a real interval and \(f > 0\) a positive smooth function on \(I\):

- A **Robertson-Walker spacetime** is the product manifold \(I \times M^n\) endowed with the Lorentzian metric

\[
\langle \cdot, \cdot \rangle = -dt^2 + f^2 \langle \cdot, \cdot \rangle_M.
\]

\(\star\) We denote it by \(-I \times_f M^n\).

\(-I \times_f M^n\) has constant sectional curvature \(\bar{\kappa}\) if and only if \(M^n\) has constant sectional curvature \(\kappa\) and

\[
\frac{f''}{f} = \bar{\kappa} = \frac{(f')^2 + \kappa}{f^2}.
\]
Robertson-Walker spacetimes

Some energy conditions

- A spacetime \(\mathcal{M}^{n+1} \) satisfies the **timelike convergence condition (TCC)** if \(\text{Ric}(Z, Z) \geq 0 \), for all timelike vector \(Z \).
Some energy conditions

- A spacetime \overline{M}^{n+1} satisfies the **timelike convergence condition** (TCC) if $\overline{\text{Ric}}(Z, Z) \geq 0$, for all timelike vector Z.

- A spacetime \overline{M}^{n+1} satisfies the **null convergence condition** (NCC) if $\overline{\text{Ric}}(Z, Z) \geq 0$, for all lightlike vector Z.

For the case of a Robertson-Walker spacetime:

- $\text{TCC} \iff \kappa \geq \sup I(f f'' - f'f')$
- $\text{NCC} \iff \kappa \geq \sup I(f f'' - f'f')$

If $-I \times f |_{\overline{M}^{n+1}}$ has constant sectional curvature it satisfies NCC.

Alma L. Albujer, F. E. C. Camargo y H. F. de Lima
Hipersuperficies espaciales CMC en un RW
Robertson-Walker spacetimes

Some energy conditions

- A spacetime \mathcal{M}^{n+1} satisfies the **timelike convergence condition** (TCC) if $\overline{Ric}(Z, Z) \geq 0$, for all timelike vector Z.

- A spacetime \mathcal{M}^{n+1} satisfies the **null convergence condition** (NCC) if $\overline{Ric}(Z, Z) \geq 0$, for all lightlike vector Z.

For the case of a Robertson-Walker spacetime:

$$TCC \iff \begin{cases} \ f'' \leq 0 \\ \kappa \geq \sup_l(\frac{ff''}{l} - f'^2) \end{cases}$$
Robertson-Walker spacetimes

Some energy conditions

- A spacetime \mathcal{M}^{n+1} satisfies the **timelike convergence condition (TCC)** if $\text{Ric}(Z, Z) \geq 0$, for all timelike vector Z.

- A spacetime \mathcal{M}^{n+1} satisfies the **null convergence condition (NCC)** if $\text{Ric}(Z, Z) \geq 0$, for all lightlike vector Z.

For the case of a Robertson-Walker spacetime:

\[
\text{TCC} \iff f'' \leq 0
\]

\[
\kappa \geq \sup_I (ff'' - f'^2)
\]

\[
\text{NCC} \iff \kappa \geq \sup_I (ff'' - f'^2)
\]

Alma L. Albujer, F. E. C. Camargo y H. F. de Lima

Hipersuperficies espaciales CMC en un RW
Robertson-Walker spacetimes

Some energy conditions

- A spacetime \overline{M}^{n+1} satisfies the **timelike convergence condition (TCC)** if $\overline{Ric}(Z, Z) \geq 0$, for all timelike vector Z.

- A spacetime \overline{M}^{n+1} satisfies the **null convergence condition (NCC)** if $\overline{Ric}(Z, Z) \geq 0$, for all lightlike vector Z.

For the case of a Robertson-Walker spacetime:

- $\text{TCC} \iff f'' \leq 0$

- $\kappa \geq \sup_{I} (ff'' - f'^{2})$

- $\text{NCC} \iff \kappa \geq \sup_{I} (ff'' - f'^{2})$

\leadsto If $-I \times_f M^n$ has constant sectional curvature it satisfies **NCC**.
Let Σ^n be a **spacelike hypersurface** immersed into $-I \times_f M^n$.

Since $\partial_t = \left(\partial/\partial t\right) (t, x)$ is a unitary timelike vector field globally defined on $-I \times_f M^n$, then there exists a unique timelike unitary normal vector field N globally defined on Σ^n such that $\langle N, \partial_t \rangle \leq -1 < 0$ on Σ^n. N is called the **future-pointing Gauss map** of Σ^n and $\cosh \theta = -\langle N, \partial_t \rangle$ measures the normal hyperbolic angle of Σ^n.

Let h denote the **height function** of Σ^n, $h = \left(\pi I\right)^\top$. It is not difficult to see that $\nabla h = -\partial_t^\top = -\partial_t + \cosh \theta N$ and $\|\nabla h\|^2 = \cosh^2 \theta - 1$.

Given $t_0 \in \mathbb{R}$, the spacelike hypersurface $\{t_0\} \times M^n$ is called a **slice**. Slices are characterized by $\theta \equiv 0$. Or equivalently, $h = c \in \mathbb{R}$.

Slices are totally umbilical spacelike hypersurfaces with $H = f'(t_0) f(t_0)$.
Let Σ^n be a spacelike hypersurface immersed into $-I \times_f M^n$.

Since $\partial_t = (\partial/\partial_t)_{(t,x)}$ is a unitary timelike vector field globally defined on $-I \times_f M^n$, then there exists a unique timelike unitary normal vector field N globally defined on Σ^n such that

$$\langle N, \partial_t \rangle \leq -1 < 0 \quad \text{on} \quad \Sigma^n.$$
Spacelike hypersurfaces in $-I \times_f M^n$

- Let Σ^n be a **spacelike hypersurface** immersed into $-I \times_f M^n$.

 - Since $\partial_t = (\partial/\partial_t)(t,x)$ is a unitary timelike vector field globally defined on $-I \times_f M^n$, then there exists a unique timelike unitary normal vector field N globally defined on Σ^n such that

 $$\langle N, \partial_t \rangle \leq -1 < 0 \quad \text{on} \quad \Sigma^n.$$

- N is called the **future-pointing Gauss map of** Σ^n and $\cosh \theta = -\langle N, \partial_t \rangle$ measures the **normal hyperbolic angle** of Σ^n.
Let Σ^n be a **spacelike hypersurface** immersed into $-I \times_f M^n$.

Since $\partial_t = (\partial/\partial t)_{(t,x)}$ is a unitary timelike vector field globally defined on $-I \times_f M^n$, then there exists a unique timelike unitary normal vector field N globally defined on Σ^n such that

$$\langle N, \partial_t \rangle \leq -1 < 0 \quad \text{on} \quad \Sigma^n.$$

N is called the **future-pointing Gauss map of** Σ^n and $\cosh \theta = -\langle N, \partial_t \rangle$ measures the **normal hyperbolic angle** of Σ^n.

Let h denote the **height function** of Σ^n, $h = (\pi_I)\uparrow$. It is not difficult to see that

$$\nabla h = -\partial_t\uparrow = -\partial_t + \cosh \theta \, N \quad \text{and} \quad \|\nabla h\|^2 = \cosh^2 \theta - 1.$$
Let Σ^n be a spacelike hypersurface immersed into $-I \times f M^n$.

Since $\partial_t = (\partial/\partial_t)_{(t,x)}$ is a unitary timelike vector field globally defined on $-I \times f M^n$, then there exists a unique timelike unitary normal vector field N globally defined on Σ^n such that

$$\langle N, \partial_t \rangle \leq -1 < 0 \quad \text{on} \quad \Sigma^n.$$

N is called the future-pointing Gauss map of Σ^n and $\cosh \theta = -\langle N, \partial_t \rangle$ measures the normal hyperbolic angle of Σ^n.

Let h denote the height function of Σ^n, $h = (\pi_I)^\top$. It is not difficult to see that

$$\nabla h = -\partial_t^\top = -\partial_t + \cosh \theta \, N \quad \text{and} \quad \|\nabla h\|^2 = \cosh^2 \theta - 1.$$

Given $t_0 \in \mathbb{R}$, the spacelike hypersurface $\{t_0\} \times M^n$ is called a slice. Slices are characterized by $\theta \equiv 0$. Or equivalently, $h = c \in \mathbb{R}$.
Spacelike hypersurfaces in $-I \times_f M^n$

- Let Σ^n be a **spacelike hypersurface** immersed into $-I \times_f M^n$.

- Since $\partial_t = (\partial/\partial t)(t, x)$ is a unitary timelike vector field globally defined on $-I \times_f M^n$, then there exists a unique timelike unitary normal vector field N globally defined on Σ^n such that

 \[
 \langle N, \partial_t \rangle \leq -1 < 0 \quad \text{on} \quad \Sigma^n.
 \]

- N is called the **future-pointing Gauss map of** Σ^n and $cosh \theta = -\langle N, \partial_t \rangle$ measures the **normal hyperbolic angle** of Σ^n.

- Let h denote the **height function** of Σ^n, $h = (\pi_I)^\top$. It is not difficult to see that

 \[
 \nabla h = -\partial_t^\top = -\partial_t + \cosh \theta \, N \quad \text{and} \quad \|\nabla h\|^2 = \cosh^2 \theta - 1.
 \]

- Given $t_0 \in \mathbb{R}$, the spacelike hypersurface $\{t_0\} \times M^n$ is called a **slice**. Slices are characterized by $\theta \equiv 0$. Or equivalently, $h = c \in \mathbb{R}$.

- Slices are totally umbilical spacelike hypersurfaces with $H = \frac{f'(t_0)}{f(t_0)}$.
Spacelike hypersurfaces in $-I \times_f M^n$

Let $A : \mathcal{X}(\Sigma) \to \mathcal{X}(\Sigma)$ be the **shape operator** of Σ^n with respect to N and let $\kappa_1, ..., \kappa_n$ be the principal curvatures of Σ^n.

The r-mean curvature function H_r of the spacelike hypersurface Σ^n is defined by

$$H_r(p) = (-1)^r \sum_{1 \leq i_1 < ... < i_r \leq n} \kappa_{i_1}(p) \cdots \kappa_{i_r}(p), \quad 1 \leq r \leq n.$$

In the particular case when $r = 1$, $H_1 = H = -\frac{1}{n} \text{tr}(A)$ is the mean curvature of Σ^n.

In the case $r = 2$, H_2 defines a geometric quantity related to the scalar curvature of the hypersurface. Σ^n is said to be contained in a timelike bounded region if it is contained in a slab $\Sigma \subset [t_1, t_2] \times M^n = \{(t, x) \in -I \times_f M^n : t_1 \leq t \leq t_2\}$.

Alma L. Albujer, F. E. C. Camargo y H. F. de Lima
Spacelike hypersurfaces in $-I \times f M^n$

Let $A : \mathcal{X}(\Sigma) \to \mathcal{X}(\Sigma)$ be the shape operator of Σ^n with respect to N and let $\kappa_1, ..., \kappa_n$ be the principal curvatures of Σ^n.

The r-mean curvature function H_r of the spacelike hypersurface Σ^n is defined by

$$\binom{n}{r} H_r(p) = (-1)^r \sum_{i_1 < ... < i_r} \kappa_{i_1}(p) \cdots \kappa_{i_r}(p), \quad 1 \leq r \leq n$$
Spacelike hypersurfaces in $-I \times_f M^n$

- Let $A : \mathcal{X}(\Sigma) \rightarrow \mathcal{X}(\Sigma)$ be the **shape operator** of Σ^n with respect to N and let $\kappa_1, \ldots, \kappa_n$ be the principal curvatures of Σ^n.

- The *r-mean curvature function* H_r of the spacelike hypersurface Σ^n is defined by

$$\binom{n}{r} H_r(p) = (-1)^r \sum_{i_1 < \ldots < i_r} \kappa_{i_1}(p) \cdots \kappa_{i_r}(p), \quad 1 \leq r \leq n$$

 - In the particular case when $r = 1$, $H_1 = H = -\frac{1}{n} \text{tr}(A)$ is the mean curvature of Σ^n.

 - In the case $r = 2$, H_2 defines a geometric quantity related to the scalar curvature of the hypersurface.
Let \(A : \mathcal{X}(\Sigma) \rightarrow \mathcal{X}(\Sigma) \) be the shape operator of \(\Sigma^n \) with respect to \(N \) and let \(\kappa_1, \ldots, \kappa_n \) be the principal curvatures of \(\Sigma^n \).

The \(r \)-mean curvature function \(H_r \) of the spacelike hypersurface \(\Sigma^n \) is defined by

\[
\binom{n}{r} H_r(p) = (-1)^r \sum_{i_1 < \ldots < i_r} \kappa_{i_1}(p) \cdots \kappa_{i_r}(p), \quad 1 \leq r \leq n
\]

- In the particular case when \(r = 1 \), \(H_1 = H = -\frac{1}{n} \text{tr}(A) \) is the mean curvature of \(\Sigma^n \).
- In the case \(r = 2 \), \(H_2 \) defines a geometric quantity related to the scalar curvature of the hypersurface.

\(\Sigma^n \) is said to be contained in a timelike bounded region if it is contained in a slab

\[
\Sigma \subset [t_1, t_2] \times M^n = \{(t, x) \in -I \times f \, M^n : t_1 \leq t \leq t_2\}.
\]
Theorem (Parametric version)

Let $-I \times_f M^n$ be a Robertson-Walker spacetime whose Riemannian fiber M^n has constant sectional curvature κ and such that it obeys NCC. Let Σ^n be a complete spacelike hypersurface of $-I \times_f M^n$ with constant mean curvature $H \neq 0$ and contained in a timelike bounded region. If

$$0 \leq H \sup_{\Sigma} \left(\frac{f'}{f} \circ h \right) \leq H^2$$

and

$$\| \nabla h \|^2 \leq \alpha \left| H - \sup_{\Sigma} \left(\frac{f'}{f} \circ h \right) \right| \beta$$

for some positive constants α and β, then Σ^n is a slice.
Sketch of the proof:

- MAIN IDEA: To apply the O-Y maximum principle to $f(h) \cosh \theta$.

\star $f(h) \cosh \theta$ is bounded from above since Σ is contained in a timelike bounded region and $\|\nabla h\|^2 \leq \alpha |H - \sup_{\Sigma} (f' \circ h)| \beta$.

\star Let $\{E_1, \ldots, E_n\}$ be a local orthonormal frame of $X(\Sigma)$. Then, by the Gauss equation, for any $X \in X(\Sigma)$ it holds that $\text{Ric}(X, X) = \sum_i \langle R(X, E_i) X, E_i \rangle + \|AX + nH^2 X\|^2 \leq \text{Ric}(X, X)$ is bounded $\iff \sum_i \langle R(X, E_i) X, E_i \rangle$ is bounded.
Sketch of the proof:

- **MAIN IDEA:** To apply the O-Y maximum principle to $f(h) \cosh \theta$.

 $f(h) \cosh \theta$ is bounded from above since Σ^n is contained in a timelike bounded region and $\|\nabla h\|^2 \leq \alpha \left| H - \sup_{\Sigma} \left(\frac{f'}{f} \circ h \right) \right|^\beta$.
Sketch of the proof:

- **MAIN IDEA:** To apply the O-Y maximum principle to $f(h) \cosh \theta$.

- $f(h) \cosh \theta$ is bounded from above since Σ^n is contained in a timelike bounded region and $\|\nabla h\|^2 \leq \alpha \left| H - \sup_{\Sigma} \left(\frac{f'}{f} \circ h \right) \right|^\beta$.

- Let $\{E_1, \ldots, E_n\}$ be a local orthonormal frame of $\mathfrak{X}(\Sigma)$. Then, by the Gauss equation, for any $X \in \mathfrak{X}(\Sigma)$ it holds that

$$\text{Ric}(X, X) = \sum \langle \overline{R}(X, E_i)X, E_i \rangle + \left\| AX + \frac{nH}{2} X \right\|^2 - \frac{n^2 H^2}{4} \left\| X \right\|^2.$$
Sketch of the proof:

- **MAIN IDEA:** To apply the O-Y maximum principle to $f(h) \cosh \theta$.

- $f(h) \cosh \theta$ is bounded from above since Σ^n is contained in a timelike bounded region and $\|\nabla h\|^2 \leq \alpha \left| H - \sup_{\Sigma} \left(\frac{f'}{f} \circ h \right) \right|^\beta$.

- Let $\{E_1, \ldots, E_n\}$ be a local orthonormal frame of $\mathfrak{X}(\Sigma)$. Then, by the Gauss equation, for any $X \in \mathfrak{X}(\Sigma)$ it holds that

 \[
 \text{Ric}(X, X) = \sum_i \langle \bar{R}(X, E_i)X, E_i \rangle + \left\| AX + \frac{nH}{2} X \right\|^2 - \frac{n^2H^2}{4} \|X\|^2
 \]

 \leadsto Ric(X, X) is bounded \iff $\sum_i \langle \bar{R}(X, E_i)X, E_i \rangle$ is bounded.
Sketch of the proof:

We can compute

\[
\sum_i \langle \bar{R}(X, E_i)X, E_i \rangle = \left(\frac{\kappa}{f^2(h)} + \frac{f'^2(h)}{f^2(h)} \right) (n - 1) \|X\|^2 \\
+ \left(\frac{\kappa}{f^2(h)} - (\ln f)''(h) \right) (n - 2) \langle X, \nabla h \rangle^2 \\
+ \left(\frac{\kappa}{f^2(h)} - (\ln f)''(h) \right) \|X\|^2 \|\nabla h\|^2
\]
Sketch of the proof:

- We can compute

\[
\sum_i \langle \bar{R}(X, E_i) X, E_i \rangle = \left(\frac{\kappa}{f^2(h)} + \frac{f'(h)^2}{f^2(h)} \right) (n - 1) \|X\|^2 \\
+ \left(\frac{\kappa}{f^2(h)} - (\ln f)''(h) \right) (n - 2) \langle X, \nabla h \rangle^2 \\
+ \left(\frac{\kappa}{f^2(h)} - (\ln f)''(h) \right) \|X\|^2 \|\nabla h\|^2
\]
Sketch of the proof:

- We can compute

\[
\sum_i \langle \bar{R}(X, E_i)X, E_i \rangle = \left(\frac{\kappa}{f^2(h)} + \frac{f'^2(h)}{f^2(h)} \right) (n - 1)\|X\|^2 \\
+ \left(\frac{\kappa}{f^2(h)} - (\ln f)''(h) \right) (n - 2)\langle X, \nabla h \rangle^2 \\
+ \left(\frac{\kappa}{f^2(h)} - (\ln f)''(h) \right) \|X\|^2\|\nabla h\|^2 \\
\geq \left(\frac{\kappa}{f^2(h)} + \frac{f'^2(h)}{f^2(h)} \right) (n - 1)\|X\|^2
\]
Sketch of the proof:

We can compute

$$\sum_{i} \langle \bar{R}(X, E_i)X, E_i \rangle = \left(\frac{\kappa}{f^2(h)} + \frac{f'^2(h)}{f^2(h)} \right) (n - 1) \|X\|^2$$

$$+ \left(\frac{\kappa}{f^2(h)} - (\ln f)''(h) \right) (n - 2) \langle X, \nabla h \rangle^2$$

$$+ \left(\frac{\kappa}{f^2(h)} - (\ln f)''(h) \right) \|X\|^2 \|\nabla h\|^2$$

$$\geq \left(\frac{\kappa}{f^2(h)} + \frac{f'^2(h)}{f^2(h)} \right) (n - 1) \|X\|^2$$

Since κ is constant and Σ^n is contained in a timelike bounded region

$$\sum_{i} \langle \bar{R}(X, E_i)X, E_i \rangle$$

is bounded from below.
Sketch of the proof:

There exists a sequence \(\{p_k\}_{k \in \mathbb{N}} \) on \(\Sigma^n \) such that

\[
\lim_{k \to \infty} (f(h(p_k)) \cosh \theta(p_k)) = \sup_{p \in \Sigma^n} (f(h(p)) \cosh \theta(p))
\]

and

\[
\lim_{k \to \infty} \Delta (f(h(p_k)) \cosh \theta(p_k)) \leq 0.
\]
Sketch of the proof:

- There exists a sequence \(\{p_k\}_{k \in \mathbb{N}} \) on \(\Sigma^n \) such that

 \[
 \lim_{k \to \infty} (f(h(p_k))) \cosh \theta(p_k)) = \sup_{p \in \Sigma^n} (f(h(p))) \cosh \theta(p))
 \]

 and

 \[
 \lim_{k \to \infty} \Delta (f(h(p_k))) \cosh \theta(p_k)) \leq 0.
 \]

- On the other hand,

 \[
 \Delta(f(h) \cosh \theta) = - nHf'(h)
 \]

 \[
 + f(h) \cosh \theta \left(n^2 H^2 - n(n - 1)H_2 \right)
 \]

 \[
 + (n - 1)f(h) \cosh \theta \left(\frac{\kappa}{f^2(h)} - (\ln f)''(h) \right) \|\nabla h\|^2
 \]
Sketch of the proof:

- There exists a sequence \(\{p_k\}_{k \in \mathbb{N}} \) on \(\Sigma^n \) such that

\[
\lim_{k \to \infty} (f(h(p_k))) \cosh \theta(p_k)) = \sup_{p \in \Sigma^n} (f(h(p))) \cosh \theta(p))
\]

and

\[
\lim_{k \to \infty} \Delta (f(h(p_k))) \cosh \theta(p_k)) \leq 0.
\]

- On the other hand,

\[
\Delta (f(h) \cosh \theta) = -nHf'(h)
\]

\[
+ f(h) \cosh \theta \left(n^2 H^2 - n(n-1)H_2 \right)
\]

\[
+ (n-1)f(h) \cosh \theta \left(\frac{\kappa}{f^2(h)} - (\ln f)''(h) \right) \|\nabla h\|^2
\]
Sketch of the proof:

There exists a sequence \(\{ p_k \}_{k \in \mathbb{N}} \) on \(\Sigma^n \) such that

\[
\lim_{k \to \infty} (f(h(p_k)) \cosh \theta(p_k)) = \sup_{p \in \Sigma^n} (f(h(p)) \cosh \theta(p))
\]

and

\[
\lim_{k \to \infty} \Delta (f(h(p_k)) \cosh \theta(p_k)) \leq 0.
\]

On the other hand,

\[
\Delta(f(h) \cosh \theta) \geq - n \cosh \theta f(h) H \sup_{\Sigma} \left(\frac{f'}{f} \circ h \right) \\
+ f(h) \cosh \theta \left(n^2 H^2 - n(n - 1) H_2 \right) \\
+ (n - 1)f(h) \cosh \theta \left(\frac{\kappa}{f^2(h)} - (\ln f)''(h) \right) \| \nabla h \|^2
\]
Sketch of the proof:

- There exists a sequence \(\{p_k\}_{k \in \mathbb{N}} \) on \(\Sigma^n \) such that
 \[
 \lim_{k \to \infty} (f(h(p_k)) \cosh \theta(p_k)) = \sup_{p \in \Sigma^n} (f(h(p)) \cosh \theta(p))
 \]
 and
 \[
 \lim_{k \to \infty} \Delta (f(h(p_k)) \cosh \theta(p_k)) \leq 0.
 \]

- On the other hand,
 \[
 \Delta (f(h) \cosh \theta) \geq -n \cosh \theta f(h) H \sup_{\Sigma} \left(\frac{f'}{f} \circ h \right)
 + f(h) \cosh \theta \left(n^2 H^2 - n(n - 1)H_2 \right)
 + (n - 1)f(h) \cosh \theta \left(\frac{\kappa}{f^2(h)} - (\ln f)''(h) \right) \|\nabla h\|^2
 \]
Sketch of the proof:

There exists a sequence \(\{ p_k \} \subseteq \mathbb{N} \) on \(\Sigma^n \) such that

\[
\lim_{k \to \infty} (f(h(p_k))) \cosh \theta(p_k)) = \sup_{p \in \Sigma^n} (f(h(p))) \cosh \theta(p))
\]

and

\[
\lim_{k \to \infty} \Delta (f(h(p_k))) \cosh \theta(p_k)) \leq 0.
\]

On the other hand,

\[
\Delta (f(h) \cosh \theta) \geq f(h) \cosh \theta nH \left(H - \sup_{\Sigma} \left(\frac{f'}{f} \circ h \right) \right) \\
+ n(n - 1)f(h) \cosh \theta (H^2 - H_2) \\
+ (n - 1)f(h) \cosh \theta \left(\frac{\kappa}{f^2(h)} - (\ln f)'(h) \right) \| \nabla h \|^2
\]
Sketch of the proof:

- There exists a sequence \(\{p_k\}_{k \in \mathbb{N}} \) on \(\Sigma^n \) such that

\[
\lim_{k \to \infty} (f(h(p_k)) \cosh \theta(p_k)) = \sup_{p \in \Sigma^n} (f(h(p)) \cosh \theta(p))
\]

and

\[
\lim_{k \to \infty} \Delta (f(h(p_k)) \cosh \theta(p_k)) \leq 0.
\]

- On the other hand,

\[
\Delta(f(h) \cosh \theta) \geq f(h) \cosh \theta nH \left(H - \sup_{\Sigma} \left(\frac{f'}{f} \circ h \right) \right) + n(n - 1)f(h) \cosh \theta (H^2 - H_2) + (n - 1)f(h) \cosh \theta \left(\frac{\kappa}{f^2(h)} - (\ln f)''(h) \right) \|\nabla h\|^2
\]
Sketch of the proof:

- There exists a sequence \(\{p_k\}_{k \in \mathbb{N}} \) on \(\Sigma^n \) such that
 \[
 \lim_{k \to \infty} (f(h(p_k)) \cosh \theta(p_k)) = \sup_{p \in \Sigma^n} (f(h(p)) \cosh \theta(p))
 \]
 and
 \[
 \lim_{k \to \infty} \Delta (f(h(p_k)) \cosh \theta(p_k)) \leq 0
 \]

- On the other hand,

\[
\Delta(f(h) \cosh \theta) \geq f(h) \cosh \theta nH \left(H - \sup_{\Sigma} \left(\frac{f'}{f} \circ h\right)\right) + n(n - 1)f(h) \cosh \theta \left(H^2 - H_2\right) + (n - 1)f(h) \cosh \theta \left(\frac{\kappa}{f^2(h)} - (\ln f)''(h)\right) \|\nabla h\|^2 \\
\geq 0.
\]
Sketch of the proof:

Therefore,

$$0 \geq \lim_{k \to \infty} (\Delta (f(h(p_k)) \cosh \theta(p_k))) \geq 0.$$
Sketch of the proof:

Therefore,

\[0 \geq \lim_{k \to \infty} \left(\Delta \left(f(h(p_k)) \cosh \theta(p_k) \right) \right) \geq 0. \]

\[\implies H \left(H - \sup_{\Sigma} \left(\frac{f'}{f} \circ h \right) \right) = 0. \]
Sketch of the proof:

Therefore,

$$0 \geq \lim_{k \to \infty} (\Delta (f(h(p_k)) \cosh \theta(p_k))) \geq 0.$$

$$\implies H(H - \sup_{\Sigma} (\frac{f'}{f} \circ h)) = 0.$$

Since $H \neq 0$, $H - \sup_{\Sigma} (\frac{f'}{f} \circ h) = 0$
Sketch of the proof:

Therefore,

$$0 \geq \lim_{k \to \infty} \left(\Delta (f(h(p_k))) \cosh \theta(p_k) \right) \geq 0.$$

$$\implies H \left(H - \sup_{\Sigma} \left(\frac{f'}{f} \circ h \right) \right) = 0.$$

Since $H \neq 0$, $H - \sup_{\Sigma} \left(\frac{f'}{f} \circ h \right) = 0$

$$\implies \| \nabla h \|^2 = 0 \implies \Sigma^n \text{ is a slice.}$$
Calabi-Bernstein type results in $-I \times_f M^n$

Remarks:

- We do not need to ask Σ^n to be contained in a timelike bounded region. We just need that f, f' and f'' are bounded on Σ^n and $\inf_{\Sigma} f(h(p)) > 0$.

Therefore, for the case of a static Robertson Walker spacetime:

Corollary

Let $-I \times_f M^n$ be a static Robertson Walker spacetime whose Riemannian fiber M^n has non-negative constant sectional curvature. Let Σ^n be a complete spacelike hypersurface in $-I \times_f M^n$ with constant mean curvature and bounded normal hyperbolic angle. Then, Σ^n is maximal.
Remarks:

- We do not need to ask Σ^n to be contained in a timelike bounded region. We just need that f, f', and f'' are bounded on Σ^n and $\inf_{\Sigma} f(h(p)) > 0$.

- In order to conclude that $H = \sup_{\Sigma} \left(\frac{f'}{f} \circ h \right)$ we only need to ask the normal hyperbolic angle to be bounded.
Remarks:

- We do not need to ask Σ^n to be contained in a timelike bounded region. We just need that f, f' and f'' are bounded on Σ^n and $\inf_{\Sigma} f(h(p)) > 0$.

- In order to conclude that $H = \sup_{\Sigma} \left(\frac{f'}{f} \circ h \right)$ we only need to ask the normal hyperbolic angle to be bounded.

\[\Rightarrow \] Therefore, for the case of a static Robertson Walker spacetime:

Corollary

Let $-I \times M^n$ be a static Robertson Walker spacetime whose Riemannian fiber M^n has non-negative constant sectional curvature. Let Σ^n be a complete spacelike hypersurface in $-I \times M^n$ with constant mean curvature and bounded normal hyperbolic angle. Then, Σ^n is maximal.
In the particular case when Σ^n is an immersed spacelike hypersurface in \mathbb{L}^{n+1}, we have $N : \Sigma^n \to \mathbb{H}^n$ where

$$\mathbb{H}^n = \{ x \in \mathbb{L}^{n+1} : \langle x, x \rangle = -1, x_1 \geq 1 \}.$$
Calabi-Bernstein type results in $-I \times f M^n$

In the particular case when Σ^n is an immersed spacelike hypersurface in \mathbb{L}^{n+1}, we have $N : \Sigma^n \to \mathbb{H}^n$ where

$$\mathbb{H}^n = \{ x \in \mathbb{L}^{n+1} : \langle x, x \rangle = -1, x_1 \geq 1 \}.$$

$N(\Sigma)$ is called the **hyperbolic image of Σ^n**.
Calabi-Bernstein type results in $-I \times_f M^n$

In the particular case when Σ^n is an immersed spacelike hypersurface in \mathbb{L}^{n+1}, we have $N : \Sigma^n \to \mathbb{H}^n$ where

$$\mathbb{H}^n = \{x \in \mathbb{L}^{n+1} : \langle x, x \rangle = -1, x_1 \geq 1\}.$$

$N(\Sigma)$ is called the **hyperbolic image of Σ^n**.

A geodesic ball $B(a, \varrho)$ in \mathbb{H}^n of radius $\varrho > 0$ centered at $a \in \mathbb{H}^n$ is

$$B(a, \varrho) = \{p \in \mathbb{H}^n : -\cosh \varrho \leq \langle p, a \rangle \leq -1\}.$$
In the particular case when Σ^n is an immersed spacelike hypersurface in \mathbb{L}^{n+1}, we have $N : \Sigma^n \to \mathbb{H}^n$ where

$$\mathbb{H}^n = \{ x \in \mathbb{L}^{n+1} : \langle x, x \rangle = -1, x_1 \geq 1 \}.$$

$N(\Sigma)$ is called the \textbf{hyperbolic image of Σ^n}.

A geodesic ball $B(a, \varrho)$ in \mathbb{H}^n of radius $\varrho > 0$ centered at $a \in \mathbb{H}^n$ is

$$B(a, \varrho) = \{ p \in \mathbb{H}^n : -\cosh \varrho \leq \langle p, a \rangle \leq -1 \}.$$

The normal hyperbolic angle of Σ^n is bounded if and only if $N(\Sigma) \subseteq B(a, \varrho)$ for certain $a \in \mathbb{H}^n$ and $\varrho > 0$.

Corollary (Aiyama (1992), Xin (1991))

Let Σ^n be a complete spacelike hypersurface with constant mean curvature immersed into \mathbb{L}^{n+1}. Suppose that the hyperbolic image of Σ^n is contained in a geodesic ball of \mathbb{H}^n. Then Σ^n is a hyperplane.
Calabi-Bernstein type results in \(-I \times_f M^n\)

- In the particular case when \(\Sigma^n\) is an immersed spacelike hypersurface in \(\mathbb{L}^{n+1}\), we have \(N : \Sigma^n \to \mathbb{H}^n\) where

\[
\mathbb{H}^n = \{x \in \mathbb{L}^{n+1} : \langle x, x \rangle = -1, x_1 \geq 1\}.
\]

- \(N(\Sigma)\) is called the hyperbolic image of \(\Sigma^n\).

- A geodesic ball \(B(a, \varrho)\) in \(\mathbb{H}^n\) of radius \(\varrho > 0\) centered at \(a \in \mathbb{H}^n\) is

\[
B(a, \varrho) = \{p \in \mathbb{H}^n : -\cosh \varrho \leq \langle p, a \rangle \leq -1\}.
\]

\(\Rightarrow\) The normal hyperbolic angle of \(\Sigma^n\) is bounded if and only if \(N(\Sigma) \subseteq B(a, \varrho)\) for certain \(a \in \mathbb{H}^n\) and \(\varrho > 0\).

Corollary (Aiyama (1992), Xin (1991))

Let \(\Sigma^n\) be a complete spacelike hypersurface with constant mean curvature immersed into \(\mathbb{L}^{n+1}\). Suppose that the hyperbolic image of \(\Sigma^n\) is contained in a geodesic ball of \(\mathbb{H}^n\). Then \(\Sigma^n\) is a hyperplane.
An **entire vertical graph** in $-I \times_f M^n$ is determined by a smooth function $u \in C^\infty(M)$ and it is given by

$$\Sigma^n(u) = \{(u(x), x) : x \in M^n\} \subset -I \times_f M^n.$$
Entire spacelike vertical graphs in $-I \times_f M^n$

- An **entire vertical graph** in $-I \times_f M^n$ is determined by a smooth function $u \in C^\infty(M)$ and it is given by
 \[
 \Sigma^n(u) = \{(u(x), x) : x \in M^n\} \subset -I \times_f M^n.
 \]
- The metric induced on M^n from the Lorentzian metric of $-I \times_f M^n$ via the graph is
 \[
 \langle , \rangle = -du^2 + f^2(u)\langle , \rangle_{M^n}.
 \]
Entire spacelike vertical graphs in $-I \times_f M^n$

- An entire **vertical graph** in $-I \times_f M^n$ is determined by a smooth function $u \in \mathcal{C}^\infty(M)$ and it is given by
 $$\Sigma^n(u) = \{(u(x), x) : x \in M^n\} \subset -I \times_f M^n.$$

- The metric induced on M^n from the Lorentzian metric of $-I \times_f M^n$ via the graph is
 $$\langle \cdot , \cdot \rangle = -du^2 + f^2(u)\langle \cdot , \cdot \rangle_{M^n}.$$

- The graph $\Sigma^n(u)$ is a spacelike hypersurface iff $|Du|^2 < f^2(u)$.

It is well known that an entire spacelike graph is not necessarily complete. In fact, there exist examples of entire non-complete graphs in $-\mathbb{R} \times H^n$ which are maximal (Albujer, 2008 and Albujer, Alías, 2009) or spacelike with constant mean curvature (Alarcón, Souam).
Entire spacelike vertical graphs in $-I \times_f M^n$

- An entire vertical graph in $-I \times_f M^n$ is determined by a smooth function $u \in C^\infty(M)$ and it is given by
 \[
 \Sigma^n(u) = \{(u(x), x) : x \in M^n\} \subset -I \times_f M^n.
 \]

- The metric induced on M^n from the Lorentzian metric of $-I \times_f M^n$ via the graph is
 \[
 \langle , \rangle = -du^2 + f^2(u)\langle , \rangle_{M^n}.
 \]

- The graph $\Sigma^n(u)$ is a spacelike hypersurface iff $|Du|^2 < f^2(u)$.

- For any entire spacelike graph we have the following relation:
 \[
 \|\nabla h\|^2 = \frac{|Du|^2}{f^2(u) - |Du|^2}.
 \]
Entire spacelike vertical graphs in $-I \times f M^n$

- An **entire vertical graph** in $-I \times f M^n$ is determined by a smooth function $u \in C^\infty(M)$ and it is given by
 \[\Sigma^n(u) = \{(u(x), x) : x \in M^n\} \subset -I \times f M^n. \]

- The metric induced on M^n from the Lorentzian metric of $-I \times f M^n$ via the graph is
 \[\langle \cdot, \cdot \rangle = -du^2 + f^2(u)\langle \cdot, \cdot \rangle_{M^n}. \]

- The graph $\Sigma^n(u)$ is a spacelike hypersurface iff $|Du|^2 < f^2(u)$.

- For any entire spacelike graph we have the following relation:
 \[||\nabla h||^2 = \frac{|Du|^2}{f^2(u) - |Du|^2}. \]

- It is well known that an entire spacelike graph is not necessarily complete.
An entire vertical graph in \(-I \times f M^n\) is determined by a smooth function \(u \in C^\infty(M)\) and it is given by
\[
\Sigma^n(u) = \{(u(x), x) : x \in M^n\} \subset -I \times f M^n.
\]

The metric induced on \(M^n\) from the Lorentzian metric of \(-I \times f M^n\) via the graph is
\[
\langle , \rangle = -du^2 + f^2(u)\langle , \rangle_{M^n}.
\]

The graph \(\Sigma^n(u)\) is a spacelike hypersurface iff \(|Du|^2 < f^2(u)|\).

For any entire spacelike graph we have the following relation:
\[
\|\nabla h\|^2 = \frac{|Du|^2}{f^2(u) - |Du|^2}.
\]

It is well known that an entire spacelike graph is not necessarily complete.

In fact, there exist examples of entire non-complete graphs in \(-\mathbb{R} \times H^n\) which are maximal (Albujer, 2008 and Albujer, Alías, 2009) or spacelike with constant mean curvature (Alarcón, Souam).
Entire vertical spacelike graphs in $-I \times_f M^n$

- However, it is possible to give a non-parametric version of our main result:

Theorem (Non-parametric version)

Let $-I \times_f M^n$ be a Robertson Walker spacetime whose Riemannian fiber M^n is a complete manifold with constant sectional curvature κ, and suppose that is obeys NCC. Let $\Sigma^n(u)$ be an entire spacelike graph in $-I \times_f M^n$ with constant mean curvature $H \neq 0$ and contained in a timelike bounded region. If

$$0 \leq H \sup_{x \in \Sigma^n(u)} \frac{f'}{f}(u(x)) \leq H^2$$

and

$$|Du|_{M^n}^2 \leq \frac{\alpha \inf_{\Sigma^n(u)} (f^2(u)) |H - \sup_{\Sigma^n(u)} \frac{f'}{f}(u)|^\beta}{1 + \alpha |H - \sup_{\Sigma^n(u)} \frac{f'}{f}(u)|^\beta}$$

for some positive constants α and β, then $\Sigma^n(u)$ is a slice.
Sketch of the proof:

- Under the assumptions of the theorem $\Sigma^n(u)$ is a complete hypersurface
Sketch of the proof:

- Under the assumptions of the theorem $\Sigma^n(u)$ is a complete hypersurface

- In fact, for every $X \in \mathfrak{X}(\Sigma)$

\[
\langle X, X \rangle = -\langle Du, X \rangle_{M^n}^2 + f^2(u)\langle X, X \rangle_{M^n}
\]
Sketch of the proof:

- Under the assumptions of the theorem $\Sigma^n(u)$ is a complete hypersurface

- In fact, for every $X \in \mathcal{X}(\Sigma)$

$$\langle X, X \rangle = -\langle Du, X \rangle_{M^n}^2 + f^2(u)\langle X, X \rangle_{M^n} \geq \left(f^2(u) - |Du|^2 \right) \langle X, X \rangle_{M^n}$$
Sketch of the proof:

- Under the assumptions of the theorem $\Sigma^n(u)$ is a complete hypersurface

- In fact, for every $X \in \mathfrak{X}(\Sigma)$

\[
\langle X, X \rangle = -\langle Du, X \rangle^2_{M^n} + f^2(u)\langle X, X \rangle_{M^n} \\
\geq (f^2(u) - |Du|^2) \langle X, X \rangle_{M^n} \\
\geq c\langle X, X \rangle_{M^n}
\]

where $c = \inf_{\Sigma^n(u)} f^2(u)/\left(1 + \alpha|H - \sup_{\Sigma^n(u)} \frac{f'}{f}(u)|^\beta\right) > 0$.

Therefore $L \geq cL_{M^n}$, where L and L_{M^n} denote the length of a curve on $\Sigma^n(u)$ w.r.t. $\langle \cdot, \cdot \rangle$ and $\langle \cdot, \cdot \rangle_{M^n}$ respectively.

Since M^n is complete by assumption, the induced metric on $\Sigma^n(u)$ from the metric of $-I \times f_{M^n}$ is also complete. The result follows from the parametric version.
Sketch of the proof:

- Under the assumptions of the theorem $\Sigma^n(u)$ is a complete hypersurface

- In fact, for every $X \in \mathfrak{X}(\Sigma)$

$$
\langle X, X \rangle = -\langle Du, X \rangle_{M^n}^2 + f^2(u)\langle X, X \rangle_{M^n} \\
\geq (f^2(u) - |Du|^2) \langle X, X \rangle_{M^n} \\
\geq c\langle X, X \rangle_{M^n}
$$

where $c = \inf_{\Sigma^n(u)} f^2(u)/\left(1 + \alpha|H - \sup_{\Sigma^n(u)} \frac{f'(u)}{f(u)}|\beta\right) > 0$.

Therefore $L \geq cL_{M^n}$, where L and L_{M^n} denote the length of a curve on $\Sigma^n(u)$ w. r. t. $\langle \cdot, \cdot \rangle$ and $\langle \cdot, \cdot \rangle_{M^n}$ respectively.
Sketch of the proof:

- Under the assumptions of the theorem $\Sigma^n(u)$ is a complete hypersurface

 * In fact, for every $X \in \mathcal{X}(\Sigma)$

 $$\langle X, X \rangle = -\langle Du, X \rangle_{M^n}^2 + f^2(u)\langle X, X \rangle_{M^n} \geq (f^2(u) - |Du|^2) \langle X, X \rangle_{M^n} \geq c\langle X, X \rangle_{M^n}$$

 where $c = \inf_{\Sigma^n(u)} f^2(u)/ (1 + \alpha|H - \sup_{\Sigma^n(u)} f'(u)|^\beta) > 0$.

 \[\implies\] Therefore $L \geq cL_{M^n}$, where L and L_{M^n} denote the length of a curve on $\Sigma^n(u)$ w. r. t. $\langle \cdot, \cdot \rangle$ and $\langle \cdot, \cdot \rangle_{M^n}$ respectively.

 \[\implies\] Since M^n is complete by assumption, the induced metric on $\Sigma^n(u)$ from the metric of $-I \times f M^n$ is also complete.
Sketch of the proof:

Under the assumptions of the theorem \(\Sigma^n(u) \) is a complete hypersurface

\[\langle X, X \rangle = -\langle Du, X \rangle_{M^n}^2 + f^2(u)\langle X, X \rangle_{M^n} \]
\[\geq (f^2(u) - |Du|^2) \langle X, X \rangle_{M^n} \]
\[\geq c \langle X, X \rangle_{M^n} \]

where \(c = \inf_{\Sigma^n(u)} f^2(u) / \left(1 + \alpha |H - \sup_{\Sigma^n(u)} \frac{f'}{f} (u) |^\beta \right) > 0. \)

Therefore \(L \geq cL_{M^n} \), where \(L \) and \(L_{M^n} \) denote the length of a curve on \(\Sigma^n(u) \) w. r. t. \(\langle , \rangle \) and \(\langle , \rangle_{M^n} \) respectively.

Since \(M^n \) is complete by assumption, the induced metric on \(\Sigma^n(u) \) from the metric of \(-I \times f M^n \) is also complete.

The result follows from the parametric version.
¡Gracias por su atención!