Averaged alternating reflections in geodesic spaces

Aurora Fernández-León

Aurora Fernández-León (auroraf1@us.es)
Universidad de Sevilla

Abstract. The convex feasibility problem for two sets consists in finding a point in the intersection of two nonempty closed and convex sets provided such a point exists. In Hilbert spaces there exists a wide range of algorithms that use metric projections on the sets in order to obtain sequences of points that converge weakly or in norm (under more restrictive conditions) to a solution of this problem. One of the most famous algorithms is the alternating projection method which was developed by von Neumann [1] and was recently adapted to the setting of CAT(0) spaces.

Another class of algorithms considered in this respect bases on reflections instead of projections. Given a nonempty closed and convex subset A of a Hilbert space H, the reflection of a point $x \in H$ with respect to A is the image of x by the reflection mapping $R_A = 2P_A - I$, where P_A stands for the metric projection onto A and I is the identity mapping. In this lecture we focus on the averaged alternating reflection (AAR) method which generates the following sequence for a starting point $x_0 \in H$: $x_n = T^nx_0$, where $T = \frac{I + R_A R_B}{2}$. We study the AAR method in geodesic spaces. Specifically, we consider spaces of constant curvature, CAT(0) spaces and the gluing of model spaces.

References